Browse > Article
http://dx.doi.org/10.5808/GI.2011.9.3.102

Differentially Expressed Genes by Inhibition of C-terminal Src Kinase by siRNA in Human Vascular Smooth Muscle Cells and Their Association with Blood Pressure  

Hong, Kyung-Won (Department of Biomedical Engineering, School of Medicine, Kyung Hee University)
Shin, Young-Bin (Department of Biomedical Engineering, School of Medicine, Kyung Hee University)
Kim, Koan-Hoi (Department of Pharmacology, School of Medicine, Pusan National University)
Oh, Berm-Seok (Department of Biomedical Engineering, School of Medicine, Kyung Hee University)
Abstract
C-terminal SRC kinase (CSK) is a ubiquitously expressed, cytosolic enzyme that phosphorylates and inactivates several SRC family protein tyrosine kinases. Recent genomewide association studies have implicated CSK in the regulation of blood pressure. The current study aim is to determine the blood pressure association of the genes regulated by CSK down-regulation. The CSK mRNA expression was downregulated in vascular smooth muscle cells using small interfering RNA (siRNA). CSK mRNA levels fell by 90% in cells that were treated with CSK siRNA; the RNA from these cells was examined by microarray using the Illumina HumanRef-8 v3 platform, which comprises 24,526 reference mRNA probes. On treatment with CSK siRNA, 19 genes were downregulated by more than 2-fold and 13 genes were upregulated by more than 2-fold. Three (CANX, SLC30A7, and HMOX1) of them revealed more than 3 fold differential expression. Interestingly, the HMOX1 SNPs were associated with diastolic blood pressure in the 7551 Koreans using Korea Association REsource data, and the result was supported by the other reports that HMOX1 linked to blood vessel maintenance. Among the remaining 29 differentially expressed genes, seven (SSBP1, CDH2, YWHAE, ME2, PFTK1, G3BP2, and TUFT1) revealed association with both systolic and diastolic blood pressures. The CDH2 gene was linked to blood pressures. Conclusively, we identified 32 differentially expressed genes which were regulated by CSK reduction, and two (HOMX1 and CDH2) of them might influence the blood pressure regulation through CSK pathway.
Keywords
CSK; blood pressure; microarray; expression; association analysis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kleizen, B., and Braakman, I. (2004). Protein folding and quality control in the endoplasmic reticulum. Curr. Opin. Cell Biol. 16, 343-349.   DOI
2 Levy, D., Ehret, G.B., Rice, K., Verwoert, G.C., Launer, L.J., Dehghan, A., Glazer, N.L., Morrison, A.C., Johnson, A.D., Aspelund, T., Aulchenko, Y., Lumley, T., K?ttgen, A., Vasan, R.S., Rivadeneira, F., Eiriksdottir, G., Guo, X., Arking, D.E., Mitchell, G.F., Mattace-Raso, F.U., Smith, A.V., Taylor, K., Scharpf, R.B., Hwang, S.J., Sijbrands, E. J., Bis, J., Harris, T.B., Ganesh, S. K., O'Donnell, C.J., Hofman, A., Rotter, J.I., Coresh, J., Benjamin, E.J., Uitterlinden, A.G., Heiss, G., Fox, C.S., Witteman, J.C., Boerwinkle, E., Wang, T.J., Gudnason, V., Larson, M.G., Chakravarti, A., Psaty, B.M., and van Duijn, C.M.(2009) Genome-wide association study of blood pressure and hypertension. Nat. Genet. 41, 677-687.   DOI
3 Loeber, G., Infante, A.A., Maurer-Fogy, I., Krystek, E., and Dworkin, M.B. (1991). Human NAD (+)-dependent mitochondrial malic enzyme. cDNA cloning, primary structure, and expression in Escherichia coli. J. Biol. Chem. 266, 3016-3021.
4 Cheng, H.C., Bjorge, J.D., Aebersold, R., Fujita, D.J., and Wang, J.H. (1996). Purification of bovine thymus cytosolic C-terminal Src kinase (CSK) and demonstration of differential efficiencies of phosphorylation and inactivation of p56lyn and pp60c-src by CSK. Biochemistry 35, 11874-11887.   DOI
5 Cho, Y.S., Go, M.J., Kim, Y.J., Heo, J.Y., Oh, J.H., Ban, H.J., Yoon, D., Lee, M.H., Kim, D.J., Park, M. Cha, S.H., Kim, J.W., Han, B.G., Min, H., Ahn, Y., Park, M.S., Han, H. R., Jang, H.Y., Cho, E.Y., Lee, J.E., Cho, N.H., Shin, C., Park, T., Park, J.W., Lee, J. K., Cardon, L., McCarthy, M.I., Lee, J.Y., Oh, B., and Kim, H.L. (2009). A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat. Genet. 41, 527-534.   DOI
6 Chow, L.M., and Veillette, A. (1995). The Src and Csk families of tyrosine protein kinases in hemopoietic cells. Semin Immunol. 7, 207-226.   DOI
7 Costa, M., Ochem, A., Staub, A., and Falaschi, A. (1999). Human DNA helicase VIII: a DNA and RNA helicase corresponding to the G3BP protein, an element of the ras transduction pathway. Nucleic Acids Res. 27, 817-821.   DOI
8 Duan, L.J., Imamoto, A., and Fong, G.H. (2004). Dual roles of the C-terminal Src Kinase (Csk) during developmental vascularization. Blood 103, 1370-1372.
9 Ehret, G.B. (2010). Genome-wide association studies: contribution of genomics to understanding blood pressure and essential hypertension. Curr. Hypertens. Rep. 12: 17-25.   DOI
10 Garcia-Castro, M.I., Vielmetter, E., and Bronner-Fraser, M. (2000). N-Cadherin, a cell adhesion molecule involved in establishment of embryonic left-right asymmetry. Science 288, 1047-1051.   DOI
11 Hong, K. W., Go, M.J., Jin, H.S., Lim, J. E., Lee, J.Y., Han, B.G., Hwang, S.Y., Lee, S.H., Park, H.K., Cho, Y.S., and Oh, B. (2010a). Genetic variations in ATP2B1, CSK, ARSG and CSMD1 loci are related to blood pressure and/or hypertension in two Korean cohorts. J. Hum. Hypertens. 24, 367-372.   DOI
12 Zhang, M., Zhang, B.H., Chen, L., and An, W. (2002). Overexpression of heme oxygenase-1 protects smooth muscle cells against oxidative injury and inhibits cell proliferation. Cell Res. 12, 123-132.   DOI
13 Chen, Y.H., Lin, S.J., Lin, M.W., Tsai, H.L., Kuo, S.S., Chen, J.W., Charng, M.J., Wu, T. C., Chen, L.C., Ding, Y.A., Pan, W.H., Jou, Y.S., and Chau, L.Y. (2002). Microsatellite polymorphism in promoter of heme oxygenase- 1 gene is associated with susceptibility to coronary artery disease in type 2 diabetic patients. Hum. Genet. 111, 1-8.   DOI   ScienceOn
14 Tiranti, V., Rossi, E., Ruiz-Carrillo, A., Rossi, G., Rocchi, M., DiDonato, S., Zuffardi, O., and Zeviani, M. (1995) Chromosomal localization of mitochondrial transcription factor A (TCF6), single-stranded DNA-binding protein (SSBP), and endonuclease G (ENDOG), three human housekeeping genes involved in mitochondrial biogenesis. Genomics 25, 559-564.   DOI
15 Wang, Y., O'Connell, J.R., McArdle, P.F., Wade, J.B., Dorff, S.E., Shah, S.J., Shi, X., Pan, L., Rampersaud, E., Shen, H., Kim, J.D., Subramanya, A.R., Steinle, N.I., Parsa, A., Ober, C.C., Welling, P.A., Chakravarti, A., Weder, A.B., Cooper, R. S., Mitchell, B.D., Shuldiner, A.R., and Chang, Y.P. (2009) From the Cover: Whole-genome association study identifies STK39 as a hypertension susceptibility gene. Proc. Natl. Acad. Sci. U. S. A. 106, 226-231.   DOI
16 WTCCC (2007). Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661-678.   DOI
17 Yoshida, T., Biro, P., Cohen, T., Muller, R.M., and Shibahara, S. (1988). Human heme oxygenase cDNA and induction of its mRNA by hemin. Eur. J. Biochem. 171, 457-461.   DOI
18 Nada, S., Okada, M., MacAuley, A., Cooper, J. A., and Nakagawa, H. (1991). Cloning of a complementary DNA for a protein-tyrosine kinase that specifically phosphorylates a negative regulatory site of p60c-src. Nature 351, 69-72.   DOI
19 Luo, Y., and Radice, G.L. (2005). N-cadherin acts upstream of VE-cadherin in controlling vascular morphogenesis. J. Cell Biol. 169, 29-34.   DOI
20 Mao, Z., Shay, B., Hekmati, M., Fermon, E., Taylor, A., Heikinheimo, K., Lustmann, J., Fisher, L.W., Young, M.F., and Deutsch, D. (2001). The human tuftelin gene: cloning and characterization. Gene 279, 181-196.   DOI
21 Nada, S., Yagi, T., Takeda, H., Tokunaga, T., Nakagawa, H., Ikawa, Y., Okada, M., and Aizawa, S. (1993). Constitutive activation of Src family kinases in mouse embryos that lack Csk. Cell 73, 1125-1135.   DOI
22 Newton-Cheh, C., Johnson, T., Gateva, V., Tobin, M.D., Bochud, M., Coin, L., Najjar, S.S., Zhao, J.H., Heath, S.C., Eyheramendy, S., Papadakis, K., Voight, B.F., Scott, L.J., Zhang, F., Farrall, M., Tanaka, T., Wallace, C., Chambers, J.C., Khaw, K.T., Nilsson, P., van der Harst, P., Polidoro, S., Grobbee, D.E., Onland-Moret, N.C., Bots, M.L., Wain, L.V., Elliott, K.S., Teumer, A., Luan, J., Lucas, G., Kuusisto, J., Burton, P.R., Hadley, D., McArdle, W.L.; Wellcome Trust Case Control Consortium, Brown, M., Dominiczak, A., Newhouse, S.J., Samani, N.J., Webster, J., Zeggini, E., Beckmann, J. S., Bergmann, S., Lim, N., Song, K., Vollenweider, P., Waeber, G., Waterworth, D.M., Yuan, X., Groop, L., Orho-Melander, M., Allione, A., Di Gregorio, A., Guarrera, S., Panico, S., Ricceri, F., Romanazzi, V., Sacerdote, C., Vineis, P., Barroso, I., Sandhu, M. S., Luben, R.N., Crawford, G.J., Jousilahti, P., Perola, M., Boehnke, M., Bonnycastle, L. L., Collins, F.S., Jackson, A.U., Mohlke, K.L., Stringham, H.M., Valle, T.T., Willer, C. J., Bergman, R.N., Morken, M.A., Döring, A., Gieger, C., Illig, T., Meitinger, T., Org, E., Pfeufer, A., Wichmann, H.E., Kathiresan, S., Marrugat, J., O'Donnell, C.J., Schwartz, S.M., Siscovick, D.S., Subirana, I., Freimer, N.B., Hartikainen, A.L., McCarthy, M.I., O'Reilly, P.F., Peltonen, L., Pouta, A., de Jong, P.E., Snieder, H., van Gilst, W.H., Clarke, R., Goel, A., Hamsten, A., Peden, J.F., Seedorf, U., Syvänen, A.C., Tognoni, G., Lakatta, E.G., Sanna, S., Scheet, P., Schlessinger, D., Scuteri, A., Dörr, M., Ernst, F., Felix, S.B., Homuth, G., Lorbeer, R., Reffelmann, T., Rettig, R., Völker, U., Galan, P., Gut, I.G., Hercberg, S., Lathrop, G.M., Zelenika, D., Deloukas, P., Soranzo, N., Williams, F.M., Zhai, G., Salomaa, V., Laakso, M., Elosua, R., Forouhi, N.G., Völzke, H., Uiterwaal, C.S., van der Schouw, Y.T., Numans, M.E., Matullo, G., Navis, G., Berglund, G., Bingham, S.A., Kooner, J.S., Connell, J.M., Bandinelli, S., Ferrucci, L., Watkins, H., Spector, T.D., Tuomilehto, J., Altshuler, D., Strachan, D.P., Laan, M., Meneton, P., Wareham, N.J., Uda, M., Jarvelin, M.R., Mooser, V., Melander, O., Loos, R.J., Elliott, P., Abecasis, G.R., Caulfield, M., and Munroe, P.B. (2009) Genome-wide association study identifies eight loci associated with blood pressure. Nat. Genet. 41, 666-676.   DOI
23 Org, E., Eyheramendy, S., Juhanson, P., Gieger, C., Lichtner, P., Klopp, N., Veldre, G., Doring, A., Viigimaa, M. and Sober, S. (2009). Genome-wide scan identifies CDH13 as a novel susceptibility locus contributing to blood pressure determination in two European populations. Hum. Mol. Genet. 18, 2288-2296.   DOI
24 Takeuchi, F., Isono, M., Katsuya, T., Yamamoto, K., Yokota, M., Sugiyama, T., Nabika, T., Fujioka, A., Ohnaka, K., Asano, H., Yamori, Y., Yamaguchi, S., Kobayashi, S., Takayanagi, R., Ogihara, T., and Kato, N. (2010) Blood pressure and hypertension are associated with 7 loci in the Japanese population. Circulation 121, 2302-2309.   DOI
25 Parsons, S.J., and Parsons, J.T. (2004). Src family kinases, key regulators of signal transduction. Oncogene 23, 7906-7909.   DOI
26 Rabbee, N., and Speed, T. P. (2006). A genotype calling algorithm for affymetrix SNP arrays. Bioinformatics 22, 7-12.   DOI
27 Reid, R.A., and Hemperly, J.J. (1990). Human N-cadherin: nucleotide and deduced amino acid sequence. Nucleic Acids Res. 18, 5896.   DOI
28 Hong, K.W., Lim, J.E., Kim, Y.J., Cho, N.H., Shin, C., and Oh, B. (2010b). KARE genomewide association study of blood pressure using imputed SNPs. Genomics & Informatics 8, 103-107.   DOI
29 Hong, K. W., Jin, H.S., Lim, J.E., Kim, S., Go, M.J., and Oh, B. (2010c). Recapitulation of two genomewide association studies on blood pressure and essential hypertension in the Korean population. J. Hum. Genet. 55, 336-341.   DOI
30 Huang, L., Yu, Y.Y., Kirschke, C.P., Gertz, E.R., and Lloyd, K.K. (2007). Znt7 (Slc30a7)-deficient mice display reduced body zinc status and body fat accumulation. J. Biol. Chem. 282, 37053-37063.   DOI
31 Imamoto, A., and Soriano, P. (1993). Disruption of the csk gene, encoding a negative regulator of Src family tyrosine kinases, leads to neural tube defects and embryonic lethality in mice. Cell 73, 1117-1124.   DOI
32 Kirschke, C.P., and Huang, L. (2003). ZnT7, a novel mammalian zinc transporter, accumulates zinc in the Golgi apparatus. J. Biol. Chem. 278, 4096-4102.   DOI