• Title/Summary/Keyword: protein kinases

Search Result 734, Processing Time 0.029 seconds

c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) are involved in Mycobacterium tuberculosis-induced expression of Leukotactin-1

  • Cho, Jang-Eun;Park, Sang-Jung;Cho, Sang-Nae;Lee, Hye-Young;Kim, Yoon-Suk
    • BMB Reports
    • /
    • v.45 no.10
    • /
    • pp.583-588
    • /
    • 2012
  • Leukotactin(Lkn)-1 is a CC chemokine and is upregulated in macrophages in response to Mycobacterium tuberculosis (MTB) infection. We investigated whether mitogen-activated protein kinases (MAPKs) are involved in MTB-induced expression of Lkn-1. The up-regulation of Lkn-1 by infection with MTB was inhibited in cells treated with inhibitors specific for JNK (SP600125) or p38 MAPK (SB202190). Since the up-regulation of Lkn-1 by MTB has been reported to be mediated by the PI3-K/PDK1/Akt signaling, we examined whether JNK and/or p38 MAPK are also involved in this signal pathway. MTB-induced Akt phosphorylation was blocked by treatment with JNK- or p38 MAPK-specific inhibitors implying that p38 and JNK are upstream of Akt. In addition, treatment with the PI3-K-specific inhibitor inhibited MTB-stimulated activation of JNK or p38 MAPK implying that PI3-K is upstream of JNK and p38 MAPK. These results collectively suggest that JNK and p38 MAPK are involved in the signal pathway responsible for MTB-induced up-regulation of Lkn-1.

Vitamin D Promotes Odontogenic Differentiation of Human Dental Pulp Cells via ERK Activation

  • Woo, Su-Mi;Lim, Hae-Soon;Jeong, Kyung-Yi;Kim, Seon-Mi;Kim, Won-Jae;Jung, Ji-Yeon
    • Molecules and Cells
    • /
    • v.38 no.7
    • /
    • pp.604-609
    • /
    • 2015
  • The active metabolite of vitamin D such as $1{\alpha}$,25-dihydroxyvitamin ($D_3(1{\alpha},25(OH)_2D_3)$ is a well-known key regulatory factor in bone metabolism. However, little is known about the potential of vitamin D as an odontogenic inducer in human dental pulp cells (HDPCs) in vitro. The purpose of this study was to evaluate the effect of vitamin $D_3$ metabolite, $1{\alpha},25(OH)_2D_3$, on odontoblastic differentiation in HDPCs. HDPCs extracted from maxillary supernumerary incisors and third molars were directly cultured with $1{\alpha},25(OH)_2D_3$ in the absence of differentiation-inducing factors. Treatment of HDPCs with $1{\alpha},25(OH)_2D_3$ at a concentration of 10 nM or 100 nM significantly upregulated the expression of dentin sialophosphoprotein (DSPP) and dentin matrix protein1 (DMP1), the odontogenesis-related genes. Also, $1{\alpha},25(OH)_2D_3$ enhanced the alkaline phosphatase (ALP) activity and mineralization in HDPCs. In addition, $1{\alpha},25(OH)_2D_3$ induced activation of extracellular signal-regulated kinases (ERKs), whereas the ERK inhibitor U0126 ameliorated the upregulation of DSPP and DMP1 and reduced the mineralization enhanced by $1{\alpha},25(OH)_2D_3$. These results demonstrated that $1{\alpha},25(OH)_2D_3$ promoted odontoblastic differentiation of HDPCs via modulating ERK activation.

Effects of Korean Red Ginseng Extract for the Treatment of Atopic Dermatitis-Like Skin Lesions in Mice

  • Sohn, Eun-Hwa;Jang, Seon-A;Lee, Chul-Hoon;Jang, Ki-Hyo;Kang, Se-Chan;Park, Hye-Jin;Pyo, Suhk-Neung
    • Journal of Ginseng Research
    • /
    • v.35 no.4
    • /
    • pp.479-486
    • /
    • 2011
  • Atopic dermatitis (AD) is an allergic, inflammatory skin disease characterized by chronic eczema and mechanical injury to the skin, caused by scratching. Korean red ginseng (RG) has diverse biological activities, but the molecular effects of RG on allergic diseases, like AD, are unclear. The present study was designed to investigate whether RG inhibits 1-chloro-2,4-dinitrobenzene (DNCB)-induced AD in a mouse model. DNCB was applied topically on the dorsal surface of Balb/c mice to induce AD-like skin lesions. We observed the scratching behavior and examined the serum IgE level and interleukin (IL)-4 and IL-10 in splenocytes compared with dexamethasone. We also evaluated the DNCB-induced mitogen-activated protein kinases (MAPKs), NF-${\kappa}B$, and Ikaros activities after RG treatment using reverse transcriptase-polymerase chain reaction, Western blotting, and ELISA. Our data showed that the topical application of RG significantly improved the AD-like skin lesions and scratching behavior. RG decreased not only the mRNA expression of IL-4 and IL-10, but also the secretion of IL-4 protein and serum IgE in mice. Additionally, RG treatment decreased the DNCB-induced MAPKs activity and subsequent Ikaros translocation irrespective of NF-${\kappa}B$. We suggest that RG may be useful as a therapeutic nutrition for the treatment of AD.

Effect of Nardostachys chinensis on Induction of Differentiation in U937 Monomyelocytic Cells (감송향(甘松香) 물추출물이 U937 백혈병 세포의 분화유도에 미치는 영향)

  • Kim, Jin-Kuk;Ju, Sung-Min;Jeon, Byung-Jae;Yang, Hyun-Mo;Jeon, Byung-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.29-36
    • /
    • 2011
  • Nardostachyts chinensis (N. chinensis) belonging to the family Valerianaceae has been used to elicit stomachic and sedative effects. The MAPKs are serine/threonine kinases involved in the regulation of various cellular responses, such as cell proliferation, differentiation and apoptosis. The PKC also plays a key role in regulating the response of hematopoietic cells to both physiological and pathological inducers of proliferation and differentiation. This study investigated the signaling pathways on the U937 cell differentiation induced by N. chinensis. N. chinensis induced the differentiation of U937 cells, as shown by increased of differentiation surface antigen CD11b. Activation of ERK increased time-dependently in differentiation of U937 cells induced by N. chinensis, but activations of JNK and p38 were unaffected. Inhibitor of ERK (PD98059) significantly reduced CD11b expression induced by N. chinensis in U937 cells. In addition, N. chinensis increased protein level of PKC ${\beta}$I and PKC ${\beta}$II isoforms, but the protein level of PKC ${\alpha}$ and PKC ${\gamma}$was constant. PKC inhibitors (GF 109203X and H-7) inhibited U937 cell differentiation and the ERK activation induced by N. chinensis. These results indicated that PKC and ERK may be involved in U937 cell differentiation induced by N. chinensis.

Anti-thrombotic activity of fermented rice bran extract with several oriental plants in vitro and in vivo (쌀겨발효추출물의 항혈전효과)

  • Jeon, Bo-Ra;Ji, Hyun Dong;Kim, Su Jung;Lee, Chun-Hee;Kim, Tae-Wan;Rhee, Man-Hee
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.4
    • /
    • pp.233-240
    • /
    • 2015
  • Although the effects of the rice bran have recently been investigated, there is no information regarding platelet physiology available. However, it is well known that fermented natural plants have a beneficial effect on cardiovascular diseases. Therefore, this study was conducted to investigate whether fermented rice bran extract (FRBE) with several plants (Artemisia princeps, Angelica Gigantis Radix, Cnidium officinale, and Camellia sinensis) affected agonist-induced platelet aggregation, and if so, what the underlying mechanism of its activity was. We performed several experiments, including in vitro platelet aggregation, intracellular calcium concentration and adenosine triphosphate release. In addition, the activation of integrin ${\alpha}_{II}b{\beta}3$ was determined using fibrinogen binding. Thrombus formation was also evaluated in vivo using an arterio-venous shunt model. The FRBE inhibited collagen-induced platelet aggregation in a concentration-dependent manner. FRBE significantly and dose dependently attenuated thrombus formation using rat arterio-venous shunt. FRBE suppressed the intracellular calcium mobilization in collagen-stimulated platelets. We also found that FRBE inhibited extracellular stimuli-responsive kinase 1/2, p38-mitogen-activated protein kinases and c-Jun N-terminal kinase phosphorylation. These results suggested that FRBE inhibited collagen-induced platelet aggregation, which was mediated by modulation of downstream signaling molecules. In conclusion, FRBE could be developed as a functional food against aberrant platelet activation-related cardiovascular diseases.

Glaucocalyxin A Activates FasL and Induces Apoptosis Through Activation of the JNK Pathway in Human Breast Cancer Cells

  • Li, Mei;Jiang, Xiao-Gang;Gu, Zhen-Lun;Zhang, Zu-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5805-5810
    • /
    • 2013
  • This study was conducted to analyze the molecular mechanisms responsible for anti-proliferation effects of glaucocalyxin A in cultured MCF-7 and Hs578T breast cancer cells. The concentration that reduced cell viability to 50% (IC50) after 72 h treatment was derived and potential molecular mechanisms of anti-proliferation using the IC50 were investigated as changes in cell cycle arrest and apoptosis. Gene and protein expression changes related to apoptosis were investigated by semi-quantitative RT-PCR and western blotting, respectively. Involvement of phosphorylated mitogen-activated protein kinases and JNK signaling in regulation of these molecules was characterized by western blotting. Cell viability decreased in a concentration-dependent manner and the IC50 was determined as $1{\mu}M$ in MCF-7 and $4{\mu}M$ in Hs578T cell. Subsequently, we demonstrated that the GLA-induced MCF-7 and Hst578T cell death was due to cell cycle arrest at the G2/M transition and was associated with activation of the c-jun N-terminal kinase (JNK) pathway. We conclude that GLA has the potential to inhibit the proliferation of human breast cancer cells through the JNK pathway and suggest its application forthe effective therapy for patients with breast cancer.

Aberrant Expression of Pim-3 Promotes Proliferation and Migration of Ovarian Cancer Cells

  • Zhuang, Hao;Zhao, Man-Yin;Hei, Kai-Wen;Yang, Bai-Cai;Sun, Li;Du, Xue;Li, Yong-Mei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3325-3331
    • /
    • 2015
  • Pim kinase-3(Pim-3), a member of serine/threonine protein kinases, has been implicated in multiple human cancers and involved in Myc-induced tumorigenesis. However, little is known regarding its expression and biological function in human ovarian cancer. In this study we showed that the clinical significance and biological functions of Pim-3 in ovarian cancer and found that higher Pim-3 mRNA level are detected in ovarian cancer tissues than those in normal ovarian tissues. There are significant correlations between higher Pim-3 expression levels with the FIGO stage, histopathological subtypes, and distant metastasis in ovarian cancer patients. Lentivirus-mediated gene overexpression of Pim-3 significantly promotes the proliferation and migration of SKOV3 cell lines. Furthermore, MACC1 and Pim-3 expression were significantly correlated in human ovarian cancer cells, and overexpression of Pim-3 in ovary cancer cells increased MACC1 mRNA and protein expression. The data indicate that Pim-3 acts as a putative oncogene in ovary cancer and could be a viable diagnostic and therapeutic target for ovarian cancer.

Binding model for eriodictyol to Jun-N terminal kinase and its anti-inflammatory signaling pathway

  • Lee, Eunjung;Jeong, Ki-Woong;Shin, Areum;Jin, Bonghwan;Jnawali, Hum Nath;Jun, Bong-Hyun;Lee, Jee-Young;Heo, Yong-Seok;Kim, Yangmee
    • BMB Reports
    • /
    • v.46 no.12
    • /
    • pp.594-599
    • /
    • 2013
  • The anti-inflammatory activity of eriodictyol and its mode of action were investigated. Eriodictyol suppressed tumor necrosis factor (mTNF)-${\alpha}$, inducible nitric oxide synthase (miNOS), interleukin (mIL)-6, macrophage inflammatory protein (mMIP)-1, and mMIP-2 cytokine release in LPS-stimulated macrophages. We found that the anti-inflammatory cascade of eriodictyol is mediated through the Toll-like Receptor (TLR)4/CD14, p38 mitogen-activated protein kinases (MAPK), extracellular-signal-regulated kinase (ERK), Jun-N terminal kinase (JNK), and cyclooxygenase (COX)-2 pathway. Fluorescence quenching and saturation-transfer difference (STD) NMR experiments showed that eriodictyol exhibits good binding affinity to JNK, $8.79{\times}10^5M^{-1}$. Based on a docking study, we propose a model of eriodictyol and JNK binding, in which eriodictyol forms 3 hydrogen bonds with the side chains of Lys55, Met111, and Asp169 in JNK, and in which the hydroxyl groups of the B ring play key roles in binding interactions with JNK. Therefore, eriodictyol may be a potent anti-inflammatory inhibitor of JNK.

Role of Shc and Phosphoinositide 3-Kinase in Heregulin-Induced Mitogenic Signaling via ErbB3

  • Kim, Myong-Soo;Koland, John G.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.6
    • /
    • pp.507-513
    • /
    • 2000
  • ErbB3/HER3 is a cell surface receptor which belongs to the ErbB/HER subfamily of receptor protein tyrosine kinases. When expressed in NIH/3T3 cells, ErbB3 can form heterodimeric coreceptor with endogenous ErbB2. Among known intracellular effectors of the ErbB2/ErbB3 are mitogen-activated protein kinase (MAPK) and phosphoinositide (PI) 3-kinase. In the present study, we studied relative contributions of above two distinct signaling pathways to the heregulin-induced mitogenic response via activated ErbB3. For this, clonal NIH-3T3 cell lines expressing wild-type ErbB3 and ErbB3 mutants were stimulated with $heregulin{\beta}_1$. While cyclin D1 level was markedly high and further increased by treatment of heregulin in cells expressing wild-type ErbB3, the elimination of either Shc binding or PI 3-kinase binding lowered both levels. This result was supported by the reduction of cyclin $D_1$ expression by preteatment with MAPK kinase inhibitor or PI 3-kinase inhibitor before stimulation with heregulin. In accordance with the cyclin $D_1$ expression, elimination of either Shc binding or PI 3-kinase binding reduced the heregulin-induced DNA synthesis and cell growth rate. Our results obtained by the comparison of wild-type and ErbB3 mutants indicate that the full induction of the cell cycle progression through $G_1/S$ phase by ErbB3 activation is dependent on both Shc/MAPK and PI 3-kinase signal transduction pathways.

  • PDF

Adenine attenuates lipopolysaccharide-induced inflammatory reactions

  • Silwal, Prashanta;Lim, Kyu;Heo, Jun-Young;Park, Jong IL;Namgung, Uk;Park, Seung-Kiel
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.4
    • /
    • pp.379-389
    • /
    • 2018
  • A nucleobase adenine is a fundamental component of nucleic acids and adenine nucleotides. Various biological roles of adenine have been discovered. It is not produced from degradation of adenine nucleotides in mammals but produced mainly during polyamine synthesis by dividing cells. Anti-inflammatory roles of adenine have been supported in IgE-mediated allergic reactions, immunological functions of lymphocytes and dextran sodium sulfate-induced colitis. However adenine effects on Toll-like receptor 4 (TLR4)-mediated inflammation by lipopolysaccharide (LPS), a cell wall component of Gram negative bacteria, is not examined. Here we investigated anti-inflammatory roles of adenine in LPS-stimulated immune cells, including a macrophage cell line RAW264.7 and bone marrow derived mast cells (BMMCs) and peritoneal cells in mice. In RAW264.7 cells stimulated with LPS, adenine inhibited production of pro-inflammatory cytokines $TNF-{\alpha}$ and IL-6 and inflammatory lipid mediators, prostaglandin $E_2$ and leukotriene $B_4$. Adenine impeded signaling pathways eliciting production of these inflammatory mediators. It suppressed $I{\kappa}B$ phosphorylation, nuclear translocation of nuclear factor ${\kappa}B$ ($NF-{\kappa}B$), phosphorylation of Akt and mitogen activated protein kinases (MAPKs) JNK and ERK. Although adenine raised cellular AMP which could activate AMP-dependent protein kinase (AMPK), the enzyme activity was not enhanced. In BMMCs, adenine inhibited the LPS-induced production of $TNF-{\alpha}$, IL-6 and IL-13 and also hindered phosphorylation of $NF-{\kappa}B$ and Akt. In peritoneal cavity, adenine suppressed the LPS-induced production of $TNF-{\alpha}$ and IL-6 by peritoneal cells in mice. These results show that adenine attenuates the LPS-induced inflammatory reactions.