Effect of Nardostachys chinensis on Induction of Differentiation in U937 Monomyelocytic Cells

감송향(甘松香) 물추출물이 U937 백혈병 세포의 분화유도에 미치는 영향

  • Kim, Jin-Kuk (Department of Pathology, College of Oriental Medicine, Wonkwang University) ;
  • Ju, Sung-Min (Department of Pathology, College of Oriental Medicine, Wonkwang University) ;
  • Jeon, Byung-Jae (Department of Pathology, College of Oriental Medicine, Wonkwang University) ;
  • Yang, Hyun-Mo (Department of Pathology, College of Oriental Medicine, Wonkwang University) ;
  • Jeon, Byung-Hun (Department of Pathology, College of Oriental Medicine, Wonkwang University)
  • 김진국 (원광대학교 한의과대학 병리학교실) ;
  • 주성민 (원광대학교 한의과대학 병리학교실) ;
  • 전병제 (원광대학교 한의과대학 병리학교실) ;
  • 양현모 (원광대학교 한의과대학 병리학교실) ;
  • 전병훈 (원광대학교 한의과대학 병리학교실)
  • Received : 2011.01.06
  • Accepted : 2010.02.11
  • Published : 2011.02.25

Abstract

Nardostachyts chinensis (N. chinensis) belonging to the family Valerianaceae has been used to elicit stomachic and sedative effects. The MAPKs are serine/threonine kinases involved in the regulation of various cellular responses, such as cell proliferation, differentiation and apoptosis. The PKC also plays a key role in regulating the response of hematopoietic cells to both physiological and pathological inducers of proliferation and differentiation. This study investigated the signaling pathways on the U937 cell differentiation induced by N. chinensis. N. chinensis induced the differentiation of U937 cells, as shown by increased of differentiation surface antigen CD11b. Activation of ERK increased time-dependently in differentiation of U937 cells induced by N. chinensis, but activations of JNK and p38 were unaffected. Inhibitor of ERK (PD98059) significantly reduced CD11b expression induced by N. chinensis in U937 cells. In addition, N. chinensis increased protein level of PKC ${\beta}$I and PKC ${\beta}$II isoforms, but the protein level of PKC ${\alpha}$ and PKC ${\gamma}$was constant. PKC inhibitors (GF 109203X and H-7) inhibited U937 cell differentiation and the ERK activation induced by N. chinensis. These results indicated that PKC and ERK may be involved in U937 cell differentiation induced by N. chinensis.

Keywords

References

  1. Mayer, R.J., Davis, R.B., Schiffer, C.A., Berg, D.T., Powell, B.L., Schulman, P., Omura, G.A., Moore, J.O., McIntyre, O.R. and Frei, E. 3rd. Intensive post-remission chemotherapy in adult with acute myeloid leukemia, Cancer and Leukemia Group B. N. Engl. J. Med. 331: 896-903, 1994. https://doi.org/10.1056/NEJM199410063311402
  2. Hoffman, R., Benz, E.J. Jr., Shattil, S.J., Furie, B., Cohen, H.J., Silberstein, L.E. and McGlave, P. Hematology. Basic principles and practice. 3rd ed., New York, Churchill Livingstone, p 1577, 2000.
  3. Pharmacopoeia of the People's Republic of China, Vol. I; Chemical Industry Press: Beijing p 65, 2000.
  4. Yoon, S.H., Ju, S.M., Kim, N.S., Park, S.C., Kim, S.H., Song, Y.S. and Jeon, B.H. Extracellular Signal-regulated Kinase(ERK) is Required for Water Extract of Nardostachys chinersis-Induced Differentiation in HL-60 Cells Kor. J. Ori. Physi. Patho. 20: 1415-1320, 2006.
  5. Cross, T.G., Scheel-Toellner, D., Henriquez, N.V., Deacon, E., Salmon, M. and Lord, J.M. Serine/threonine protein kinases and apoptosis. Exp. Cell Res. 256: 34-41, 2005.
  6. Pearson, G., Robinson, F., Beers Gibson, T., Xu, B.E., Karandikar, M., Berman, K. and Cobb, M.H. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 22: 153-183, 2001. https://doi.org/10.1210/er.22.2.153
  7. Cobb, M.H. MAP kinase pathways. Prog. Biophys. Mol. Biol. 71: 479-500, 1999. https://doi.org/10.1016/S0079-6107(98)00056-X
  8. Xia, Z., Dickens, M., Raingeaud, J., Davis, R.J. and Greenberg, M.E.Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270: 1326-1331, 1995. https://doi.org/10.1126/science.270.5240.1326
  9. Caponigro, F., French, R.C. and Kaye, S.B. Protein kinase C: a worthwhile target for anticancer drugs? Anticancer Drugs 8: 26-33, 1997. https://doi.org/10.1097/00001813-199701000-00003
  10. Nishikawa, M. and Shirakawa, S. The expression and possible roles of protein kinase C in haematopoietic cells. Leuk. Lymphoma 8: 201-211, 1992. https://doi.org/10.3109/10428199209054906
  11. Komada, F., Nishikawa, M., Uemura, Y., Morita, K., Hidaka, H. and Shirakawa, S. Expression of three major protein kinase C isozymes in various types of human leukemic cells Cancer Res. 51: 4271-4278, 1991.
  12. Tsiftsoglou, A.S., Pappas, I.S. and Vizirianakis, I.S. Mechanisms involved in the induced differentiation of leukemia cells. Pharmacol. Ther. 100: 257-290, 2003. https://doi.org/10.1016/j.pharmthera.2003.09.002
  13. Zhang, Y., Lu, Y., Zhang, L., Zheng, Q.T., Xu, L.Z. and Yang, S.L.from the roots and rhizomes of Nardostachys chinensis. J. Nat. Prod. 68: 1131-1133, 2005. https://doi.org/10.1021/np050125n
  14. Tanitsu, M.A., Takaya, Y., Akasaka, M., Niwa, M. and Oshima, Y. Guaiane- and aristolane-type sesquiterpenoids of Nardostachys chinensis roots. Phytochemistry 59: 845-849, 2002. https://doi.org/10.1016/S0031-9422(01)00469-1
  15. Li, P., Yamakuni, T., Matsunaga, K., Kondo, S. and Ohizumi, Y. Nardosinone enhances nerve growth factor-induced neurite outgrowth in a mitogen-activated protein kinase- and protein kinase C-dependent manner in PC12D cells. J. Pharmacol. Sci. 93: 122-125, 2003. https://doi.org/10.1254/jphs.93.122
  16. 구병수, 김대근, 최정현, 이동웅 감송향 정유성분의 흡입 및 경구투여시의 중추신경 억제효과. 생명과학회지 16: 156-161, 2006.
  17. Lee, S.J., Choi, Y.H. and Choi, B.T. Inhibitory Effects of Aqueous Extracts from Nardostachys chinensis on $alpha$-Melanocyte Stimulating Hormone-induced Melanogenesis in B16F10 Cells. Integrative Biosci. 10: 223-236, 2006.
  18. 박철, 정민, 서은아, 권강범, 유도곤 감송향물추출물의 HO-1 발현 촉진을 통한 세포보호 작용 및 항염효과. 동의생리병리학회지24: 624-629, 2010.
  19. 백설, 최재혁, 고성훈, 이용재, 차동석, 박은영, 강양규 전훈 감송향의 in vitro 항산화 및 항염증 효과. 동의생리병리학회지 23: 853-859, 2009.
  20. 오광우, 정지해, 정현철, 조한백, 김송백, 최창민감송향이 수지상세포 성숙에 미치는 영향. 대한한방부인과학회지 23: 14-25, 2010.
  21. Furukawa, Y., Uenoyama, S., Ohta, M., Tsunoda, A., Griffin, J.D. and Saito, M.Transforming growth factor-beta inhibits phosphorylation of the retinoblastoma susceptibility gene product in human monocytic leukemia cell line JOSK-I. J. Biol. Chem. 267: 17121-17127, 1992.
  22. Hui, E.K. and Yung, B.Y. Cell cycle phase-dependent effect of retinoic acid on the induction of granulocytic differentiation in HL-60 promyelocytic leukemia cells. Evidence for sphinganine potentiation of retinoicacid-induced differentiation. FEBS Lett. 318: 193-199, 1993. https://doi.org/10.1016/0014-5793(93)80020-U
  23. Cooper, S. Revisiting the relationship of the mammalian G1 phase to cell differentiation. J. Theor. Biol. 208: 399-402, 2001. https://doi.org/10.1006/jtbi.2000.2228
  24. Dimberg, A. and Oberg, F. Retinoic acid-induced cell cycle arrest of human myeloid cell lines. Leuk. Lymphoma 44: 1641-1650, 2003. https://doi.org/10.1080/1042819031000083316
  25. Caponigro, F., French, R.C. and Kaye, S.B. Protein kinase C: a worthwhile target for anticancer drugs? Anticancer Drugs 8: 26-33, 1997. https://doi.org/10.1097/00001813-199701000-00003
  26. Nishikawa, M. and Shirakawa, S. The expression and possible roles of protein kinase C in haematopoietic cells. Leuk. Lymphoma 8: 201-211, 1992. https://doi.org/10.3109/10428199209054906
  27. Yen, A., Roberson, M.S., Varvayanis, S. and Lee, A.T. Retinoic acid induced mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinase-dependent MAP kinase activation needed to elicit HL-60 cell differentiation and growth arrest. Cancer Res. 58: 3163-3172, 1998.
  28. Yen, A., Roberson, M.S. and Varvayanis, S. Retinoic acid selectively activates the ERK2 but not JNK/SAPK or p38 MAP kinases when inducing myeloid differentiation. In Vitro Cell Dev. Biol. Anim. 35: 527-532, 1999. https://doi.org/10.1007/s11626-999-0063-z
  29. Wang, X. and Studzinski, G.P. Activation of extracellular signal-regulated kinases (ERKs) defines the first phase of 1,25-dihydroxyvitamin D3-induced differentiation of HL60 cells. J. Cell Biochem. 80: 471-482, 2001. https://doi.org/10.1002/1097-4644(20010315)80:4<471::AID-JCB1001>3.0.CO;2-J
  30. Wang, X., Rao, J. and Studzinski, G.P. Inhibition of p38 MAP kinase activity up-regulates multiple MAP kinase pathways and potentiates 1,25-dihydroxyvitamin D(3)-induced differentiationof human leukemia HL60 cells. Exp. Cell Res. 258: 425-437, 2000. https://doi.org/10.1006/excr.2000.4939
  31. Wang, X. and Studzinski, G.P. Inhibition of p38MAP kinase potentiates the JNK/SAPK pathway and AP-1 activity in monocytic but not in macrophage or granulocytic differentiation of HL60 cells. J. Cell Biochem. 82: 68-77, 2001. https://doi.org/10.1002/jcb.1141
  32. Miranda, M.B., McGuire, T.F. and Johnson, D.E. Importance of MEK-1/-2 signaling in monocytic and granulocytic differentiation of myeloid cell lines. Leukemia 16: 683-692, 2002. https://doi.org/10.1038/sj.leu.2402400
  33. Yen, A., Roberson, M.S., Varvayanis, S. and Lee, A.T. Retinoic acid induced mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinase-dependent MAP kinase activation needed to elicit HL-60 cell differentiation and growth arrest. Cancer Res. 58: 3163-3172, 1998.
  34. Gate, L., Lunk, A. and Tew, K.D. Resistance to phorbol 12-myristate 13-acetate-induced cell growth arrest in an HL60 cell line chronically exposed to a glutathione S-transferase pi inhibitor. Biochem. Pharmacol. 65: 1611-1622, 2003. https://doi.org/10.1016/S0006-2952(03)00152-7
  35. Jaken, S. Protein kinase C isozymes and substrates. Curr. Opin. Cell Biol. 8: 168-173, 1996. https://doi.org/10.1016/S0955-0674(96)80062-7
  36. Nishizuka, Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334: 661-665, 1998.
  37. MacFarlane, D.E. and Manzel, L. Activation of $\beta$-isozyme of protein kinase C ($PKC\beta$) is necessary and sufficient for phorbol ester-induced differentiation of HL-60 promyelocytes. J. Biol. Chem. 269: 4327-4331, 1994.
  38. Nishikawa, M., Komada, F., Uemura, Y., Hidaka, H. and Shirakawa, S. Decreased expression of type II protein kinase C in HL-60 variant cells resistant to induction of cell differentiation by phorbol diester. Cancer Res. 50: 621-626, 1990.
  39. Tonetti, D.A., Henning-Chubb, C., Yamanishi, D.T. and Huberman, E. Protein kinase C-$\beta$ isrequired for macrophage differentiation of human HL-60 leukemia cells. J. Biol. Chem. 269: 23230-23235, 1994.
  40. Tonetti, D.A., Horio, M., Collart, F.R. and Huberman, E. Protein kinase C beta gene expression is associated with susceptibility of human promyelocytic leukemia cells to phorbol ester-induced differentiation. Cell Growth Differ. 3: 739-745, 1992.
  41. Kiley, S.C., Adams, P.D. and Parker, P.J. Cloning and characterization of phorbol ester differentiation-resistant U937 cell variants. Cell Growth Differ. 8: 221-230, 1997.
  42. Hass, R., Hirano, M., Kharbanda, S., Rubin, E. and Kufe, D. Resistance to phorbol ester-induced differentiation of a U-937 myeloid leukemia cell variant with a signaling defect upstream to Raf-1 kinase. Cell Growth Differ. 4: 657-663, 1993,
  43. Yang, K.D., Kharbanda, S., Datta, R., Huberman, E., Kufe, D. and Stone, R. All-trans retinoic acid reverses phorbol ester resistance in a human myeloid leukemia cell line. Blood 83: 490-496, 1994.
  44. Kim, S.H., Oh, S.M. and Kim, T.S. Induction of human leukemia HL-60 cell differentiation via a PKC/ERK pathway by helenalin, a pseudoguainolide sesquiterpene lactone. Eur. J. Pharmacol. 511: 89-97, 2005. https://doi.org/10.1016/j.ejphar.2005.02.008
  45. Kim, S.H., Kim, H.J. andKim, T.S. Differential involvement of protein kinase C in human promyelocytic leukemia cell differentiation enhanced by artemisinin. Eur. J. Pharmacol. 482: 67-76, 2003. https://doi.org/10.1016/j.ejphar.2003.09.057
  46. Kang. S.N., Lee, M.H., Kim, K.M., Cho, D. and Kim, T.S. Induction of human promyelocytic leukemia HL-60 cell differentiation into monocytes by silibinin: involvement of protein kinase C.Biochem. Pharmacol. 61: 1487-1495, 2001. https://doi.org/10.1016/S0006-2952(01)00626-8