• Title/Summary/Keyword: protein kinase B (Akt)

Search Result 162, Processing Time 0.074 seconds

Knockdown of endogenous SKIP gene enhanced insulin-induced glycogen synthesis signaling in differentiating C2C12 myoblasts

  • Xiong, Qi;Deng, Chang-Yan;Chai, Jin;Jiang, Si-Wen;Xiong, Yuan-Zhu;Li, Feng-E;Zheng, Rong
    • BMB Reports
    • /
    • v.42 no.2
    • /
    • pp.119-124
    • /
    • 2009
  • PI(3,4,5)$P_3$ produced by the activated PI3-kinase is a key lipid second messenger in cell signaling downstream of insulin. Skeletal muscle and kidney-enriched inositol phosphatase (SKIP) identified as a 5'-inositol phosphatase that hydrolyzes PI(3,4,5) $P_3$ to PI(3,4)$P_2$, negatively regulates the insulin-induced glycogen synthesis in skeletal muscle. However the mechanism by which this occurs remains unclear. To elucidate the function of SKIP in glycogen synthesis, we employed RNAi techniques to knockdown the SKIP gene in differentiating C2C12 myoblasts. Insulininduced phosphorylation of Akt (protein kinase B) and GSK-3$\beta$ (Glycogen synthase kinase), subsequent dephosphorylation of glycogen synthase and glycogen synthesis were increased by inhibiting the expression of SKIP, whereas the insulin-induced glycogen synthesis was decreased by overexpression of WT-SKIP. Our results suggest that SKIP plays a negative regulatory role in Akt/ GSK-3$\beta$/GS (glycogen synthase) pathway leading to glycogen synthesis in myocytes.

A Formulated Korean Red Ginseng Extract Inhibited Nitric Oxide Production through Akt- and Mitogen Activated Protein Kinase-dependent Heme Oxygenase-1 Upregulation in Lipoteichoic Acid-stimulated Microglial Cells (홍삼추출액은 lipoteichoic acid로 자극된 소교세포에서 Akt 및 MAPK 의존적으로 heme oxygenase-1 발현을 유도함으로써 NO 생성을 억제함)

  • Shin, Ji Eun;Lee, Kyungmin;Kim, Ji-Hee;Madhi, Iskander;Kim, YoungHee
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.402-409
    • /
    • 2019
  • Korean red ginseng made from steaming and drying fresh ginseng has long been used as a traditional herbal medicine due to its effects on the immune, endocrine, and central nerve systems and its anti-inflammatory activity. In this study, we investigated the molecular mechanism responsible for the anti-inflammatory effects of a formulated Korean red ginseng extract (RGE) in response to lipoteichoic acid (LTA), a cell wall component of gram-positive bacteria. RGE inhibited LTA-induced nitric oxide (NO) secretion and inducible nitric oxide synthase (iNOS) expression in BV-2 microglial cells, without affecting cell viability. RGE also inhibited nuclear translocation of nuclear factor kappa B ($NF-{\kappa}B$) p65 and degradation of $I{\kappa}B-{\alpha}$. In addition, RGE increased the expression of heme oxygenase-1 (HO-1) in a dose-dependent manner, and the inhibitory effect of RGE on iNOS expression was abrogated by small interfering RNA-mediated knockdown of HO-1. Moreover, RGE induced nuclear translocation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates HO-1 expression. Furthermore, the phosphoinositide-3-kinase (PI-3K) inhibitor and mitogen-activated protein kinase (MAPK) inhibitors suppressed RGE-mediated expression of HO-1, and RGE enhanced the phosphorylation of Akt, extracellular signal-regulated kinases (ERKs), p38, and c-JUN N-terminal kinases (JNKs). These results suggested that RGE suppressed the production of NO, a proinflammatory mediator, by inducing HO-1 expression via PI-3K/Akt- and MAPK-dependent signaling in LTA-stimulated microglia. The findings indicate that RGE could be used for the treatment of neuroinflammation induced by grampositive bacteria and that it may have therapeutic potential for various neuroinflammation-associated disorders.

Effect of ethanol extract from Achyranthis Radix on hair growth (우슬의 에탄올 추출물이 모발 성장에 미치는 영향)

  • Lee, Mi-Ja;Choi, Moon-Yeol;Kim, Yoo Jin;Kim, Mi Ryeo;Yoo, Wang Keun
    • The Korea Journal of Herbology
    • /
    • v.36 no.4
    • /
    • pp.1-7
    • /
    • 2021
  • Objective : As more and more people are interested in appearance in modern society, the increasing number of hair loss population can have an important impact on psychological and social problems such as depression and inappropriate interpersonal symptoms. Therefore, much research is being done on treatments for alopecia using herbal extracts with relatively few side effects. This study was investigated about the effect of Achyranthis Radix (AR) extract with ethanol solvent on hair growth. Methods : We determined the promoting efficacy of AR-ethanol extract compared with minoxidil (MNXD) on the growth of human hair dermal papilla cells (HDPCs). Cell viability was measured by MTT assay and cell proliferation was confirmed by cell cycle analysis from flow cytometry in HDPCs. Also, we monitored the safe concentration range through MTT assay. And protein expression of hair growth-related genes (insulin-like growth factor 1 (IGF-1), Wnt3a, Protein kinase B (Akt), Extracellular signal-regulated kinase (Erk)) was monitored by western blot. Results : On cell cycle analysis, the G2/M phase was higher than that of the DW group in AR ethanol extract group at 0.05 and 0.1 mg/㎖. All protein expression levels of HDPCs were increased in AR ethanol extract groups and the MNXD group, compared to the DW group, respectively. Conclusion : As mentioned above, AR extract increased cell proliferation and the protein expression of IGF-1, Wnt3a, Akt, Erk in HDPCs. These results suggest that AR ethanol extract has promoted hair growth and it might be potential hair growth supplement.

Silencing MR-1 attenuates atherosclerosis in ApoE-/- mice induced by angiotensin II through FAK-Akt -mTOR-NF-kappaB signaling pathway

  • Chen, Yixi;Cao, Jianping;Zhao, Qihui;Luo, Haiyong;Wang, Yiguang;Dai, Wenjian
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.2
    • /
    • pp.127-134
    • /
    • 2018
  • Myofibrillogenesis regulator-1 (MR-1) is a novel protein involved in cellular proliferation, migration, inflammatory reaction and signal transduction. However, little information is available on the relationship between MR-1 expression and the progression of atherosclerosis. Here we report atheroprotective effects of silencing MR-1 in a model of Ang II-accelerated atherosclerosis, characterized by suppression focal adhesion kinase (FAK) and nuclear factor kappaB ($NF-{\kappa}B$) signaling pathway, and atherosclerotic lesion macrophage content. In this model, administration of the siRNA-MR-1 substantially attenuated Ang II-accelerated atherosclerosis with stabilization of atherosclerotic plaques and inhibited FAK, Akt, mammalian target of rapamycin (mTOR) and NF-kB activation, which was associated with suppression of inflammatory factor and atherogenic gene expression in the artery. In vitro studies demonstrated similar changes in Ang II-treated vascular smooth muscle cells (VSMCs) and macrophages: siRNA-MR-1 inhibited the expression levels of proinflammatory factor. These studies uncover crucial proinflammatory mechanisms of Ang II and highlight actions of silencing MR-1 to inhibit Ang II signaling, which is atheroprotective.

Rosmarinic Acid Inhibits Ultraviolet B-Mediated Oxidative Damage via the AKT/ERK-NRF2-GSH Pathway In Vitro and In Vivo

  • Mei Jing Piao;Pattage Madushan Dilhara Jayatissa Fernando;Kyoung Ah Kang;Pincha Devage Sameera Madushan Fernando;Herath Mudiyanselage Udari Lakmini Herath;Young Ree Kim;Jin Won Hyun
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.84-93
    • /
    • 2024
  • Rosmarinic acid (RA) is a phenolic ester that protects human keratinocytes against oxidative damage induced by ultraviolet B (UVB) exposure, however, the mechanisms underlying its effects remain unclear. This study aimed to elucidate the cell signaling mechanisms that regulate the antioxidant activity of RA and confirm its cyto-protective role. To explore the signaling mechanisms, we used the human keratinocyte cell line HaCaT and SKH1 hairless mouse skin. RA enhanced glutamate-cysteine ligase catalytic subunit (GCLC) and glutathione synthetase (GSS) expression in HaCaT cells in a dose- and time-dependent manner. Moreover, RA induced nuclear factor erythroid-2-related factor 2 (NRF2) nuclear translocation and activated the signaling kinases protein kinase B (AKT) and extracellular signal-regulated kinase (ERK). Treatment with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, the ERK inhibitor U0126, and small interfering RNA (siRNA) gene silencing suppressed RA-enhanced GCLC, GSS, and NRF2 expression, respectively. Cell viability tests showed that RA significantly prevented UVB-induced cell viability decrease, whereas the glutathione (GSH) inhibitors buthionine sulfoximine, LY294002, and U0126 significantly reduced this effect. Moreover, RA protected against DNA damage and protein carbonylation, lipid peroxidation, and apoptosis caused by UVB-induced oxidative stress in a concentration-dependent manner in SKH1 hairless mouse skin tissues. These results suggest that RA protects against UVB-induced oxidative damage by activating AKT and ERK signaling to regulate NRF2 signaling and enhance GSH biosynthesis. Thus, RA treatment may be a promising approach to protect the skin from UVB-induced oxidative damage.

Inhalation Toxicity of Particulate Matters Doped with Arsenic Induced Genotoxicity and Altered Akt Signaling Pathway in Lungs of Mice

  • Park, Jin-Hong;Kwon, Jung-Taek;Minai-Teherani, Arassh;Hwang, Soon-Kyung;Chang, Seung-Hee;Lim, Hwang-Tae;Cho, Hyun-Seon;Cho, Myung-Haing
    • Toxicological Research
    • /
    • v.26 no.4
    • /
    • pp.261-266
    • /
    • 2010
  • In the workplace, the arsenic is used in the semiconductor production and the manufacturing of pigments, glass, pesticides and fungicides. Therefore, workers may be exposed to airborne arsenic during its use in manufacturing. The purpose of this study was to evaluate the potential toxicity of particulate matters (PMs) doped with arsenic (PMs-Arsenic) using a rodent model and to compare the genotoxicity in various concentrations and to examine the role of PMs-Arsenic in the induction of signaling pathway in the lung. Mice were exposed to PMs $124.4{\pm}24.5\;{\mu}g/m^3$ (low concentration), $220.2{\pm}34.5\;{\mu}g/m^3$ (middle concentration), $426.4{\pm}40.3\;{\mu}g/m^3$ (high concentration) doped with arsenic $1.4\;{\mu}g/m^3$ (Low concentration), $2.5\;{\mu}g/m^3$ (middle concentration), $5.7\;{\mu}g/m^3$ (high concentration) for 4 wks (6 h/d, 5 d/wk), respectively in the whole-body inhalation exposure chambers. To determine the level of genotoxicity, Chromosomal aberration (CA) assay in splenic lymphocytes and Supravital micronucleus (SMN) assay were performed. Then, signal pathway in the lung was analyzed. In the genotoxicity experiments, the increases of aberrant cells were concentration-dependent. Also, PMs-arsenic caused peripheral blood micronucleus frequency at high concentration. The inhalation of PMs-Arsenic increased an expression of phosphorylated Akt (p-Akt: protein kinase B) and phpsphorylated mammalian target of rapamycin (p-mTOR) at high concentration group. Taken together, inhaled PMs-Arsenic caused genotoxicity and altered Akt signaling pathway in the lung. Therefore, the inhalation of PMs-Arsenic needs for a careful risk assessment in the workplace.

Neuroprotective Mechanism of Acupuncture at GB34 for Dopaminergic Neurons in the Striatum of a Parkinson's Disease Mouse Model (파킨슨병 동물 모델을 이용한 양릉천(GB34)의 선조체 내 도파민성신경세포 보호 기전 연구)

  • Jeon, Hyongjun;Yoo, Tae-Won;Kim, Dongsoo;Kwon, Sunoh;Kim, Seungtae
    • Korean Journal of Acupuncture
    • /
    • v.32 no.3
    • /
    • pp.108-115
    • /
    • 2015
  • Objectives : Acupuncture is frequently used as an alternative therapy for Parkinson's disease(PD) in Korea. Using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced Parkinson's disease mouse model, the present study investigated a possible role of acupuncture stimulation at GB34 in suppressing dopaminergic neuronal death and regulating the phosphorylation of protein kinase B(Akt) in substantia nigra(SN) and striatum(ST). Methods : Eight-week-old male C57BL/6 mice were administered intraperitoneally with 30 mg/kg of MPTP at 24-h intervals for 5 days. Acupuncture stimulation at GB34 or SI3 was performed once a day for 12 days consecutively from the first MPTP injection. After the last acupuncture stimulation, pole test was performed to assess the effect of the acupuncture stimulations. Dopaminergic neuronal survival in the SN and the ST, dopamine transporter( DAT) and caspase-3 expression in the ST were evaluated by immunohistochemistry. The phosphorylations of Akt in the SN and the ST were measured by Western blotting. Results : MPTP administration caused behavioral impairment and dopaminergic neuronal death in the SN and the ST. It also decreased DAT expression and increased caspase-3 expression in the ST. Acupuncture stimulation at GB34 alleviated these MPTP-induced impairments. Moreover, MPTP suppressed Akt phosphorylation in the SN and the ST, whereas acupuncture stimulation at GB34 alleviated the phosphorylation in the SN. Conclusions : These results indicate that acupuncture stimulation at GB34 can inhibit MPTP-induced dopaminergic neuronal death and alleviate the Akt phosphorylation in the SN, suggesting a possible role for acupuncture in the treatment of PD.

The Anti-Inflammatory Activity of Eucommia ulmoides Oliv. Bark. Involves NF-κB Suppression and Nrf2-Dependent HO-1 Induction in BV-2 Microglial Cells

  • Kwon, Seung-Hwan;Ma, Shi-Xun;Hwang, Ji-Young;Ko, Yong-Hyun;Seo, Ji-Yeon;Lee, Bo-Ram;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • v.24 no.3
    • /
    • pp.268-282
    • /
    • 2016
  • In the present study, we investigated the anti-inflammatory properties of Eucommia ulmoides Oliv. Bark. (EUE) in lipopolysaccharide (LPS)-stimulated microglial BV-2 cells and found that EUE inhibited LPS-mediated up-regulation of pro-inflammatory response factors. In addition, EUE inhibited the elevated production of pro-inflammatory cytokines, mediators, and reactive oxygen species (ROS) in LPS-stimulated BV-2 microglial cells. Subsequent mechanistic studies revealed that EUE suppressed LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs), phosphoinositide-3-kinase (PI3K)/Akt, glycogen synthase $kinase-3{\beta}$ ($GSK-3{\beta}$), and their downstream transcription factor, nuclear factor-kappa B ($NF-{\kappa}B$). EUE also blocked the nuclear translocation of $NF-{\kappa}B$ and inhibited its binding to DNA. We next demonstrated that EUE induced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and upregulated heme oxygenase-1 (HO-1) expression. We determined that the significant up-regulation of HO-1 expression by EUE was a consequence of Nrf2 nuclear translocation; furthermore, EUE increased the DNA binding of Nrf2. In contrast, zinc protoporphyrin (ZnPP), a specific HO-1 inhibitor, blocked the ability of EUE to inhibit NO and $PGE_2$ production, indicating the vital role of HO-1. Overall, our results indicate that EUE inhibits pro-inflammatory responses by modulating MAPKs, PI3K/Akt, and $GSK-3{\beta}$, consequently suppressing $NF-{\kappa}B$ activation and inducing Nrf2-dependent HO-1 activation.

Role of stearyl-coenzyme A desaturase 1 in mediating the effects of palmitic acid on endoplasmic reticulum stress, inflammation, and apoptosis in goose primary hepatocytes

  • Tang, Bincheng;Qiu, Jiamin;Hu, Shenqiang;Li, Liang;Wang, Jiwen
    • Animal Bioscience
    • /
    • v.34 no.7
    • /
    • pp.1210-1220
    • /
    • 2021
  • Objective: Unlike mammals, goose fatty liver shows a strong tolerance to fatty acids without obvious injury. Stearyl-coenzyme A desaturase 1 (SCD1) serves crucial role in desaturation of saturated fatty acids (SAFs), but its role in the SAFs tolerance of goose hepatocytes has not been reported. This study was conducted to explore the role of SCD1 in regulating palmitic acid (PA) tolerance of goose primary hepatocytes. Methods: 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide was examined to reflect the effect of PA on hepatocytes viability, and quantitative polymerase chain reaction was used to detect the mRNA levels of several genes related to endoplasmic reticulum (ER) stress, inflammation, and apoptosis, and the role of SCD1 in PA tolerance of goose hepatocytes was explored using RNA interfere. Results: Our results indicated that goose hepatocytes exhibited a higher tolerant capacity to PA than human hepatic cell line (LO2 cells). In goose primary hepatocytes, the mRNA levels of fatty acid desaturation-related genes (SCD1 and fatty acid desaturase 2) and fatty acid elongate enzyme-related gene (elongase of very long chain fatty acids 6) were significantly upregulated with 0.6 mM PA treatment. However, in LO2 cells, expression of ER stress-related genes (x box-binding protein, binding immunoglobulin protein, and activating transcription factor 6), inflammatory response-related genes (interleukin-6 [IL-6], interleukin-1β [IL-1β], and interferon-γ) and apoptosis-related genes (bcl-2-associated X protein, b-cell lymphoma 2, Caspase-3, and Caspase-9) was significantly enhanced with 0.6 mM PA treatment. Additionally, small interfering RNA (siRNA) mediated downregulation of SCD1 significantly reduced the PA tolerance of goose primary hepatocytes under the treatment of 0.6 mM PA; meanwhile, the mRNA levels of inflammatory-related genes (IL-6 and IL-1β) and several key genes involved in the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), forkhead box O1 (FoxO1), mammalian target of rapamycin and AMPK pathways (AKT1, AKT2, FoxO1, and sirtuin 1), as well as the protein expression of cytochrome C and the apoptosis rate were upregulated. Conclusion: In conclusion, our data suggested that SCD1 was involved in enhancing the PA tolerance of goose primary hepatocytes by regulating inflammation- and apoptosis-related genes expression.

Anti-inflammatory Activities of an Ethanol Extract of Sargassum macrocarpum in Lipopolysaccharide (LPS)-stimulated RAW 264.7 Macrophages (Lipopolysaccaride로 유도된 Raw 264.7 세포에서 큰열매모자반 에탄올 추출물의 항염증 활성)

  • Cheon, Ji Min;Kim, Hyang Suk;Choi, Eun Ok;Kwon, Da Hye;Choi, Yung Hyun;Kim, Byung Woo;Hwang, Hye Jin
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1437-1444
    • /
    • 2017
  • Sargassum macrocarpum is a widely distributed marine brown algae found in the North Pacific. The objective of this study was to evaluate the anti-inflammatory activity of an ethanol extract of S. macrocarpum (EESM). First, we investigated the anti-inflammatory activities of EESM in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. EESM treatment suppressed nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) production and inhibited the expressions of the inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the mRNA and protein levels. In addition, the expression of pro-inflammatory cytokines, such as tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) and interleukin-1 beta ($IL-1{\beta}$), was decreased in a dose dependent manner. Investigation of the signaling pathways of nuclear factor kappa B ($NF-{\kappa}B$), phosphoinositide-3-kinase (PI3K)/Akt, and mitogen-activated protein kinases (MAPKs) revealed suppression of $NF-{\kappa}B$ translocation from the cytosol to nucleus by EESM treatment. The phosphorylation of the Akt and ERK proteins was also inhibited by EESM treatment. EESM treatment also stimulated the expression of the heme oxygenase-1 (HO-1) enzyme and its upstream transcription factor, nuclear factor-E2-related factor 2 (Nrf2). These results suggest that EESM has anti-inflammatory activity and could have potential uses in the field of nutraceuticals.