• Title/Summary/Keyword: protein kinase

Search Result 2,927, Processing Time 0.047 seconds

Induction of Cell Cycle Arrest at G2/M phase by Ethanol Extract of Scutellaria baicalensis in Human Renal Cell Carcinoma Caki-1 Cells (황금 에탄올 추출물에 의한 인간 신장암 세포주 Caki-1의 G2/M arrest 유발)

  • Park, Dong-Il;Jeong, Jin-Woo;Park, Cheol;Hong, Su-Hyun;Shin, Soon-Shik;Choi, Sung-Hyun;Choi, Yung-Hyun
    • Herbal Formula Science
    • /
    • v.23 no.2
    • /
    • pp.199-208
    • /
    • 2015
  • Objectives : In the present study, we investigated the effects of ethanol extract of Scutellaria baicalensis (EESB) on the progression of cell cycle in human renal cell carcinoma Caki-1 cells. Methods : The effects of EESB on cell growth and apoptosis induction were evaluated by trypan blue dye exclusion assay and flow cytometry, respectively. The mRNA and protein levels were determined by Western blot analysis and reverse transcription-polymerase chain reaction, respectively. Results : It was found that EESB treatment on Caki-1 cells resulted in a dose-dependent inhibition of cell growth and induced apoptotic cell death as detected by Annexin V-FITC staining. The flow cytometric analysis indicated that EESB resulted in G2/M arrest in cell cycle progression which was associated with the down-regulation of cyclin A expression. Our results also revealed that treatment with EESB increased the mRNA and proteins expression of tumor suppressor p53 and cyclin-dependent kinase (Cdk) inhibitor p21(WAF1/CIP1), without any noticeable changes in cyclin B1, Cdk2 and Cdc2. In addition, the incubation of cells with EESB resulted in a significant increase in the binding of p21 and Cdk2 and Cdc2. These findings suggest that EESB-induced G2/M arrest and apoptosis in Caki-1 cells is mediated through the p53-mediated upregulation of Cdk inhibitor p21. Conclusions : Taken together, these findings suggest that EESB may be a potential chemotherapeutic agent and further studies will be needed to identify the biological active compounds that confer the anti-cancer activity of S. baicalensis.

Mitochondria protection of Sparganii Rhizoma against oxidative stress in heptocytes (삼릉(三稜) 추출물의 간세포 보호 및 미토콘드리아 보호 효과)

  • Seo, Hye-Lim;Lee, Ju-Hee;Jang, Mi-Hee;Kwon, Young-Won;Cho, Il-Je;Kim, Kwang-Joong;Park, Sook-Jahr;Kim, Sang-Chan;Kim, Young-Woo;Byun, Sung-Hui
    • Herbal Formula Science
    • /
    • v.23 no.2
    • /
    • pp.189-198
    • /
    • 2015
  • Objectives : Sparganii Rhizoma is frequently used in traditional herbal medicine for treatment of blood stasis, amenorrhea and functional dyspepsia and has been reported to exhibit anti-oxidant, anti-proliferation and anti-angiogenesis peoperties. In this study, we investigated the cytoprotective effect and underlying mechanism of Sparganii Rhizoma water extract (SRE) against oxidative stress-induced mitochondrial dysfunction and apoptosis in hepatocyte. Methods : To determine the effects of SRE on oxidative stress, we induced synergistic cytotoxicity by co-treatment of arachidonic acid (AA) and iron in the HepG2 cell, a human derived hepatocyte cell line. Results : Treatment of SRE increased relative cell viability and altered the expression levels of apoptosis-related proteins such as Bcl-xL, Bcl-2 and procaspase-3. And SRE also inhibited the mitochondrial dysfunction and excessive reactive oxygen species production induced by AA+iron. In addition, SRE activated of AMP-activated protein kinase (AMPK), a potential target for cytoprotection, by increasing the phosphorylation of AMPKα at Thr-172. Morever, SRE increased phosphorylation of acetyl-CoA carboxylase, a direct downstream target of AMPK. Conclusion : These results indicated that SRE has the ability to protect against oxidative stress-induced hepatocyte damage, which may be mediated with AMPK pathway.

Dieckol Attenuates Microglia-mediated Neuronal Cell Death via ERK, Akt and NADPH Oxidase-mediated Pathways

  • Cui, Yanji;Park, Jee-Yun;Wu, Jinji;Lee, Ji Hyung;Yang, Yoon-Sil;Kang, Moon-Seok;Jung, Sung-Cherl;Park, Joo Min;Yoo, Eun-Sook;Kim, Seong-Ho;Ahn Jo, Sangmee;Suk, Kyoungho;Eun, Su-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.3
    • /
    • pp.219-228
    • /
    • 2015
  • Excessive microglial activation and subsequent neuroinflammation lead to synaptic loss and dysfunction as well as neuronal cell death, which are involved in the pathogenesis and progression of several neurodegenerative diseases. Thus, the regulation of microglial activation has been evaluated as effective therapeutic strategies. Although dieckol (DEK), one of the phlorotannins isolated from marine brown alga Ecklonia cava, has been previously reported to inhibit microglial activation, the molecular mechanism is still unclear. Therefore, we investigated here molecular mechanism of DEK via extracellular signal-regulated kinase (ERK), Akt and nicotinamide adenine dinuclelotide phosphate (NADPH) oxidase-mediated pathways. In addition, the neuroprotective mechanism of DEK was investigated in microglia-mediated neurotoxicity models such as neuron-microglia co-culture and microglial conditioned media system. Our results demonstrated that treatment of anti-oxidant DEK potently suppressed phosphorylation of ERK in lipopolysaccharide (LPS, $1{\mu}g/ml$)-stimulated BV-2 microglia. In addition, DEK markedly attenuated Akt phosphorylation and increased expression of $gp91^{phox}$, which is the catalytic component of NADPH oxidase complex responsible for microglial reactive oxygen species (ROS) generation. Finally, DEK significantly attenuated neuronal cell death that is induced by treatment of microglial conditioned media containing neurotoxic secretary molecules. These neuroprotective effects of DEK were also confirmed in a neuron-microglia co-culture system using enhanced green fluorescent protein (EGFP)-transfected B35 neuroblastoma cell line. Taken together, these results suggest that DEK suppresses excessive microglial activation and microglia-mediated neuronal cell death via downregulation of ERK, Akt and NADPH oxidase-mediated pathways.

5,8-Dimethoxy-2-Nonylamino-Naphthalene-1,4-Dione Inhibits Vascular Smooth Muscle Cell Proliferation by Blocking Autophosphorylation of PDGF-Receptor ${\beta}$

  • Kim, Yohan;Lee, Jung-Jin;Lee, Sang-Gil;Jung, Sang-Hyuk;Han, Joo-Hui;Yang, So Young;Yun, Eunju;Song, Gyu-Yong;Myung, Chang-Seon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.3
    • /
    • pp.203-208
    • /
    • 2013
  • As the abnormal proliferation of vascular smooth muscle cells (VSMCs) plays a critical role in the development of atherosclerosis and vascular restenosis, a candidate drug with antiproliferative properties is needed. We investigated the antiproliferative action and underlying mechanism of a newly synthesized naphthoquinone derivative, 5,8-dimethoxy-2-nonylamino-naphthalene-1,4-dione (2-nonylamino-DMNQ), using VSMCs treated with platelet-derived growth factor (PDGF). 2-Nonylamino-DMNQ inhibited proliferation and cell number of VSMCs induced by PDGF, but not epidermal growth factor (EGF), in a concentration-dependent manner without any cytotoxicity. This derivative suppressed PDGF-induced $[^3H]$-thymidine incorporation, cell cycle progression from $G_0/G_1$ to S phase, and the phosphorylation of phosphor-retinoblastoma protein (pRb) as well as the expression of cyclin E/D, cyclin-dependent kinase (CDK) 2/4, and proliferating cell nuclear antigen (PCNA). Importantly, 2-nonylamino-DMNQ inhibited the phosphorylation of PDGF receptor${\beta}$(PDGF-$R{\beta}$) enhanced by PDGF at $Tyr^{579}$, $Tyr^{716}$, $Tyr^{751}$, and $Tyr^{1021}$ residues. Subsequently, 2-nonylamino-DMNQ inhibited PDGF-induced phosphorylation of STAT3, ERK1/2, Akt, and $PLC{\gamma}1$. Therefore, our results indicate that 2-nonylamino-DMNQ inhibits PDGF-induced VSMC proliferation by blocking PDGF-$R{\beta}$ autophosphorylation, and subsequently PDGF-$R{\beta}$-mediated downstream signaling pathways.

Effect of Kenpaullone, a Specific Inhibitor of GSK3${\beta}$, on Melanin Synthesis in B16 Melanoma and Human Melanocytes (GSK3${\beta}$의 선택적 저해제인 Kenpaullone의 B16 멜라노마 및 인간 멜라노사이트에서의 영향)

  • Kim, Hae-Jong;Lee, You-Ree;Nguyen, Dung Hoang;Lee, Hyang-Bok;Kim, Eun-Ki
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.37 no.3
    • /
    • pp.211-218
    • /
    • 2011
  • Effects of Kenpaullone, a specific inhibitor of GSK3${\beta}$, on melanin synthesis in B16 melanoma cells and human melanocytes were investigated. Kenpaullone showed a melanogenesis stimulation activity in a concentrationdependent manner in murine B16 melanoma cells and human melanocytes without any significant effects on cell proliferation. Tyrosinase activity was increased 48 h after treatment of B16 cells with Kenpaullone. The protein expression level of tyrosinase was dose-dependently enhanced after the treatment with Kenpaullone. At the same time, the expression level of tyrosinase mRNA was also increased after addition of Kenpaullone. The stimulatory effect of Kenpaullone mainly resulted from increased expression of tyrosinase. These findings suggest that the application of GSK3${\beta}$ inhibitors may be a potential therapeutic agent for the treatment of hypopigmentation disorder.

The Inhibitory Effects of Acanthopeltis japonica on Melanogenesis (새발 추출물의 멜라닌 생성 저해 효과)

  • Yoon, Hoon-Seok;Kim, Jeong-Kook
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.2
    • /
    • pp.87-92
    • /
    • 2007
  • To develop the skin whitening agent, we investigated the effects of Acanthopeltis japonica, a rhodophyta on the coast of Jeju island, on melanogenesis. Dried A. japonica was refluxed with 70 % aqueous ethanol and the extract was evaporated to dryness. To validate the activity as a depigmenting agent, various in vitro tests, polyphenol contents, and free radical scavenging activity were performed. In addition, cellular tyrosinase activity and protein expression of p-ERT, tyrosinase, TRP-1, and TRP-2 were measured in B16/F10 murine melanoma cells. A. japonica had low polyphenol contents and low free radicals scavenging activities against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. A. japonica suppressed cellular tyrosinase activity up to 86.9 % at $100{\mu}g/mL$ with inhibition or tyrosinase and TRP-1 expression in ${\alpha}$-melanocyte stimulating hormone (${\alpha}$-MSH)-treated B16/F10 melanoma cells. Our results suggest that inhibitory effects of A. japonica on melanogenesis are due to inhibiting the pathways involving ${\alpha}$-MSH-induced ERK activation. Therefore, A. japonica nay be useful as a skin whitening agent associated with the suppressive effect of melanotrophin-induced signaling pathway to inhibit melanin synthesis.

Actinomycin D Induces Phosphorylation of STAT3 through Down-Regulation of SOCS3 in Renal Cancer Cells (신장암 세포주에서 actinomycin D에 의한 SOCS3 발현 감소를 통한 STAT3 활성화)

  • Woo, Seon-Min;Park, Eun-Jung;Kwon, Taeg-Kyu
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.141-145
    • /
    • 2011
  • Actinomycin D is a natural antibiotic that is used in anti-cancer chemotherapy and is known as a transcription inhibitor. Interestingly, actinomycin D induces phosphorylation of signal transducers and activators of transcription 3 (STAT3) in renal cancer Caki cells. In this study, we examined the molecular mechanism of actinomycin D-induced STAT3 phosphorylation. Treatment with actinomycin D induced phosphorylation of STAT3 (Tyr705) in a dose- and time-dependent manner. However, actinomycin D did not induce phosphorylation of STAT3 (Ser727), STAT1 (Tyr701) and STAT1 (Ser727). Moreover, actinomycin D-induced STAT3 phosphorylation was caused by decreased protein and mRNA levels of SOCS3, but not by JAK2 and SHP-1. In addition, other transcription inhibitor (5,6-dichloro-1-b-D-ribofuranosyl benzimidazole; DRB) also induced phosphorylation of STAT3 (Tyr705). Taken together, the present study demonstrates that transcriptional inhibitors (actinomycin D and DRB) induce phosphorylation of STAT3 (Tyr705) in Caki cells by down-regulation of SOCS3.

Novel Function of Lycopene in Vascular Endothelial Cell (Lycopene의 새로운 혈관내피세포 생리활성)

  • Cho, Jin-Gu;Kim, Sung-Hyen;Seo, Jeong-Hwa;Ahn, Sun-Young;Jeong, Eun-Sil;Park, Heon-Yong
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.1093-1099
    • /
    • 2010
  • Little is known about the cardiovascular effects of Lycopene, an anti-cancer and anti-oxidative agent. In this study, we executed a series of experiments with vascular endothelial cells to disclose the cardiovascular functions of lycopene. From our in vitro experiments, lycopene was determined to act as a stimulant to induce endothelial cell proliferation and migration. In addition, lycopene was shown to inhibit lipopolysaccharide (LPS)-induced adhesion of THP-1 leukocytes to endothelial cells, as well as activating mitogen activated protein kinase (MAPK) family members, ERK, JNK and p38 MAPK. Both ERK and p38 MAPK were involved in lycopene-induced cell proliferation, while JNK was involved in lycopene-dependent cell migration. Taken together, lycopene activates MAPK family members which regulate cell proliferation and migration. Lycopene differentially blocks LPS-dependent adhesion for THP-1 to endothelial cells, indicating that lycopene is likely to regulate a variety of vascular functions.

Raloxifene Induces Autophagy-Dependent Cell Death in Breast Cancer Cells via the Activation of AMP-Activated Protein Kinase

  • Kim, Dong Eun;Kim, Yunha;Cho, Dong-Hyung;Jeong, Seong-Yun;Kim, Sung-Bae;Suh, Nayoung;Lee, Jung Shin;Choi, Eun Kyung;Koh, Jae-Young;Hwang, Jung Jin;Kim, Choung-Soo
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.138-144
    • /
    • 2015
  • Raloxifene is a selective estrogen receptor modulator (SERM) that binds to the estrogen receptor (ER), and exhibits potent anti-tumor and autophagy-inducing effects in breast cancer cells. However, the mechanism of raloxifene-induced cell death and autophagy is not well-established. So, we analyzed mechanism underlying death and autophagy induced by raloxifene in MCF-7 breast cancer cells. Treatment with raloxifene significantly induced death in MCF-7 cells. Raloxifene accumulated GFP-LC3 puncta and increased the level of autophagic marker proteins, such as LC3-II, BECN1, and ATG12-ATG5 conjugates, indicating activated autophagy. Raloxifene also increased autophagic flux indicators, the cleavage of GFP from GFP-LC3 and only red fluorescence-positive puncta in mRFP-GFP-LC3-expressing cells. An autophagy inhibitor, 3-methyladenine (3-MA), suppressed the level of LC3-II and blocked the formation of GFP-LC3 puncta. Moreover, siRNA targeting BECN1 markedly reversed cell death and the level of LC3-II increased by raloxifene. Besides, raloxifene-induced cell death was not related to cleavage of caspases-7, -9, and PARP. These results indicate that raloxifene activates autophagy-dependent cell death but not apoptosis. Interestingly, raloxifene decreased the level of intracellular adenosine triphosphate (ATP) and activated the AMPK/ULK1 pathway. However it was not suppressed the AKT/mTOR pathway. Addition of ATP decreased the phosphorylation of AMPK as well as the accumulation of LC3-II, finally attenuating raloxifene-induced cell death. Our current study demonstrates that raloxifene induces autophagy via the activation of AMPK by sensing decreases in ATP, and that the overactivation of autophagy promotes cell death and thereby mediates the anti-cancer effects of raloxifene in breast cancer cells.

An Empirical Study of the Recovery Experiment in Clinical Chemistry (임상화학검사실에서 회수율 실험의 실증적 연구)

  • Chang, Sang-Wu;Lee, Sang-Gon;Song, Eun-Young;Park, Yong-Won;Park, Byong-Ok
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.38 no.3
    • /
    • pp.184-188
    • /
    • 2006
  • The purpose of the recovery experiment in clinical chemistry is performed to estimate proportional systematic error. We must know all measurements have some error margin in measuring analytical performance. Proportional systematic error is the type of error whose magnitude increases as the concentration of analyte increases. This error is often caused by a substance in the sample matrix that reacts with the sought for analyte and therefore competes with the analytical reagent. Recovery experiments, therefore, are used rather selectively and do not have a high priority when another analytical method is available for comparison purposes. They may still be useful to help understand the nature of any bias revealed in the comparison of kit experiments. Recovery should be expressed as a percentage because the experimental objective is to estimate proportional systematic error, which is a percentage type of error. Good recovery is 100.0%. The difference between 100 and the observed recovery(in percent) is the proportional systematic error. We calculated the amount of analyte added by multiplying the concentration of the analyte added solution by the dilution factor(mL standard)/(mL standard + mL specimen) and took the difference between the sample with addition and the sample with dilution. When making judgments on method performance, the observed that the errors should be compared to the defined allowable error. The average recovery needs to be converted to proportional error(100%/Recovery) and then compared to an analytical quality requirement expressed in percent. The results of recovery experiments were total protein(101.4%), albumin(97.4%), total bilirubin(104%), alkaline phosphatase(89.1%), aspartate aminotransferase(102.8), alanine aminotransferase(103.2), gamma glutamyl transpeptidase(97.6%), creatine kinase(105.4%), lactate dehydrogenase(95.9%), creatinine(103.1%), blood urea nitrogen(102.9%), uric acid(106.4%), total cholesterol(108.5), triglycerides(89.6%), glucose(93%), amylase(109.8), calcium(102.8), inorganic phosphorus(106.3%). We then compared the observed error to the amount of error allowable for the test. There were no items beyond the CLIA criterion for acceptable performance.

  • PDF