• Title/Summary/Keyword: protein hydrolysis

Search Result 594, Processing Time 0.026 seconds

Modification of Functional Properties of Soy Protein Isolate by Proteolytic Enzymes (단백분해효소에 의한 대두단백의 기능적 특성변화)

  • Cha, Myeong-Hwa;Yoon, Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.39-45
    • /
    • 1993
  • The effects of enzymatic modification with pepsin and actinidin was studied on molecular weight distributions and functional properties of hydrolysates from soy protein isolate (SPI) differing in degree of hydrolysis. The hydrolyzed SPI by pepsin showed 41.5% degree of hydrolysis after 5 min, and maximum hydrolysis was obtained after 2 hours. Actinidin hydrolyzed SPI 26.71% degree after 1 hour. On SDS-PAGE, native SPI showed 9 distinguishable bands on SDS-PAGE gel. Pepsin treated SPI showed one broad band in the lower part of gel. This band was shifted further to the bottom of the gel and became faint as hydrolysis time increased. While actinidin treated SPI showed different SDS-PAGE pattern from pepsin. However PAGE patterns were similar with pepsin and actinidin treated groups. With pepsin treatment, solubility of SPI distinctively increased around isoelectric point(pI). Emulsifying activity (EA) and emulsifying stability (ES) showed marked increase over pH range of $3.0{\sim}8.0$. 5 min modified group had most excellent foam expansion (FE). Foam stability (FS) was increased as pepsin treatment time increased at pI. With actinidin treatment, solubility was increased. 60 min modified SPI had the most effective EA at pH 4.5. However ES was not effected by actinidin treatment. 5 min modified group was most effect in FE. FS was higher at alkaline pH.

  • PDF

High Temperature Cooking of Fish Protein Extracts for Plastein Reaction

  • Lee, Keun-Tai;Park, Seong-Min;Lee, Sang-Ho;Ryu, Hong-Soo;Yoon, Ho-Dong
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.4
    • /
    • pp.321-327
    • /
    • 1997
  • High Temperature-cooking conditions of cultured fishes(loach, crucian carp, bastard halibut, and jacopever) were optimized by response surface methodology(RSM), and plastein products were prepared using enzymatic hydrolysis. Four models were proposed with regard to effects of time(t), temperature(T), and water/fish meat (w/f) ratio on the amount of 0.3M TCA soluble fractions. The model coefficients were ranged from p<0.0001 for jacopever to p<0.0433 for bastared halibut. Cooking conditions for 60% hydrolysis were optimized at 1) 14$0^{\circ}C$ except for crucian carp(136$^{\circ}C$); 2) 10.08 hours(loach), 7.25 hours(crucian carp), 9.85 hours(ba-stard harlibut), and 9.37 hours(iacopever); 3) 1:1(w/f) ratio except for the crucian carp(1.1:1). When protein hydrolyzates were employed for the plastein synthesis, optimum plastein-reaction conditions were determined to be pH 9.0 with chymotrypsin for the loach and crucian carp hydrolyzates, pH 9.0 with papain for the bastard halibut hydrolyzate, and pH 11.0 with trypsin for the jacopever hydrolyzate. Plastein reaction could be performed in water at concentration up to 20%(w/f).

  • PDF

Characterization of ${\beta}-Galactosidase$ from a Bacillus sp. with High Catalytic Efficiency for Transgalactosylation

  • In, Man-Jin;Jin, Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.4
    • /
    • pp.318-324
    • /
    • 1998
  • A ${\beta}$-galactosidase with high transgalactosylic activity was purified from a Bacillus species, registered as KFCC10855. The enzyme preparation showed a single protein band corresponding to a molecular mass of 150 kDa on SDS-PAGE and gave a single peak with the estimated molecular mass of 250 kDa on Sephacryl S-300 gel filtration, suggesting that the enzyme is a homodimeric protein. The amino acid and sugar analyses revealed that the enzyme is a glycoprotein, containing 19.2 weight percent of sugar moieties, and is much more abundant in hydrophilic amino acid residues than in hydrophobic residues, the mole ratio being about 2:1. The pI and optimum pH were determined to be 5.0 and 6.0, respectively. Having a temperature optimum at $70^{\circ}C$ for the hydrolysis of lactose, the enzyme showed good thermal stability. The activity of the enzyme preparation was markedly increased by the presence of exogenous Mg (II) and was decreased by the addition of EDTA. Among the metal ions examined, the most severely inhibitory effect was seen with Ag (I) and Hg (II). Further, results of protein modification by various chemical reagents implied that 1 cysteine, 1 histidine, and 2 methionine residues occur in certain critical sites of the enzyme, most likely including the active site. Enzyme kinetic parameters, measured for both hydrolysis and transgalactosylation of lactose, indicated that the enzyme has an excellent catalytic efficiency for formation of the transgalactosylic products in reaction mixtures containing high concentrations of the substrate.

  • PDF

Enzymatic Hydrolysis of Egg White Protein Exerts a Hypotensive Effect in Spontaneously Hypertensive Rats

  • Lee, Da-Eon;Jung, Tae-Hwan;Jo, Yu-Na;Yun, Sung-Seob;Han, Kyoung-Sik
    • Food Science of Animal Resources
    • /
    • v.39 no.6
    • /
    • pp.980-987
    • /
    • 2019
  • This study was conducted to investigate the hypotensive effect of egg white protein (EWP) hydrolysate (EWH) in spontaneously hypertensive rats (SHRs). The hydrolysis of EWP was effectively performed with a combination of 0.5% bromelain and 1% papain at 50℃ for 60 min. The resulting hydrolysate did not elicit an allergic reaction as confirmed by human mast cell activation test. The systolic and diastolic blood pressures of the SHRs fed the EWH diet were observed to be significantly or numerically lower than those of the other groups during the experimental period of 28 d. EWH treatment significantly (p<0.05) upregulated the nitric oxide levels in hCMEC/D3 cells and the plasma of the SHRs compared to those in the control. Moreover, EWH ingestion significantly (p<0.01) reduced the plasma angiotensin II level of the SHRs compared with that in the control. In conclusion, beyond its basic nutritional value, EWH prevents and manages hypertension, and thus can be an invaluable resource for functional food development.

Hydrolysis of Polylactic Acid Fiber by Lipase from Porcine pancreas

  • Lee, So-Hee;Song, Wba-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.6
    • /
    • pp.670-677
    • /
    • 2011
  • This study is to optimize the enzymatic processing conditions of Polylactic Acid (PLA) fiber using lipase from Porcine pancreas as an environmental technology. Hydrolytic activity dependent on pH, temperature, enzyme concentration, and treatment time, and structural change of PLA fiber were evaluated. The PLA fiber hydrolysis by lipase was maximized at 50% (o.w.f) lipase concentration $50^{\circ}C$ for 120 minutes under pH 8.5. There was a change of the protein absorbance in the treatment solution before and after the lipase treatment. In addition, there was no substantial change in the molecular and crystalline structures of PLA by lipase treatment as confirmed by DSC, XRD, and FT-IR.

PROCESSING OF LIQUEFIED SARDINE PROTEIN CONCENTRATE BY ENZYMIC METHOD AND ITS UTILIZATION (산소를 이용한 정어리 액화단백질 농축물의 제조 및 이용에 관한 연구)

  • KIM Chang-Yang;HAN Bong-Ho;LEE Keun-Tai;CHO Duck-Jae;KIM Se-Kweun;KIM Soo-Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.12 no.3
    • /
    • pp.143-153
    • /
    • 1979
  • A study on tile processing of liquefied fish protein with a long self life and good solubility has been carried out for the effective utilization of sardine. The whole sadine was chopped, homogenized with same amount of water and then hydrolyzed by the addition of commercial proteolytic enzyme. The hydrolysate was centrifuged and the supernatant was decolorized with active carbon, desodorized by azeotropic distillation with toluene, xylene and cyclohexane. The liquefied sardine protein was then concentrated by rotary vacuum evaporator with the addition of starch. The use of $0.2\%$ commercial proteolytic enzyme to the weight of the whole sardine showed the optimum hydrolysis ratio at $55^{\circ}C$ for 4 hours. The liquefied sardine protein could be decolorized and also desodorized by the treatment with $15\%$ active carl]on at room temperature for 30 minuted. In the view point of lipid concentration and the solubility of the product, the liquefied sardine protein prepared by enzymic hydrolysis from the sardine protein concentrate was better than that prepared by enzymic hydrolysis from the whole sardine and sardine protein concentrate.

  • PDF

Hydrolysis of Rice Syrup Meal Using Various Commercial Proteases (쌀 시럽박의 단백질 가수분해 특성)

  • Kim, Chang-Won;Park, Jin-Woo;Choi, Hyuk-Joon;Han, Bok-Kyung;Yoo, Seung-Seok;Kim, Byung-Yong;Baik, Moo-Yeol;Kim, Young-Rok
    • Journal of Life Science
    • /
    • v.21 no.2
    • /
    • pp.309-315
    • /
    • 2011
  • Rice syrup meal (RSM) was enzymatically hydrolyzed using eight commercial proteases (Protamex, Neutrase, Flavourzyme, Alcalase, Protease M, Protease N, Protease A, Molsin F) for 4 hr at optimum pH and temperature. Proteolytic hydrolysates were examined in supernatant and precipitate using Lowry protein assay, semimicro Kjeldahl method and gravimetric method using weight difference before and after enzymatic hydrolysis. Although RSM contains a high amount of protein (71.2%), only a very small amount of protein was hydrolyzed. Two proteases (Protease M and Protease N) were found to be the most effective in the hydrolysis of RSM protein. In Lowry method, 57.5 and 59.0 mg protein/g RSM were hydrolyzed after Protease M and Protease N treatments, respectively. In gravimetric method, 80.0 and 85.4 mg protein/g RSM were hydrolyzed after Protease M and Protease N treatments. In Kjeldahl method, 67.43 and 70.43 mg protein/g RSM were hydrolyzed after Protamex and Protease N treatments, respectively. For synergistic effect, two or three effective commercial proteases (Protease M, Protease N and Protease A) were applied to RSM at one time. The highest hydrolysis of RSM protein was observed in both Lowry protein assay (80.3 mg protein/g RSM) and gravimetric methods (153.2 mg protein/g RSM) when three commercial proteases were applied at one time, suggesting the synergistic effect of those proteases.

Characteristics of Soy Protein Hydrolysates with Enzymes Produced by Microorganisms Isolated from Traditional Meju (전통 메주 유래 미생물이 생산하는 효소에 의한 대두단백 분해물의 특성)

  • 정낙현;신용서;김성호;임무현
    • Food Science and Preservation
    • /
    • v.10 no.1
    • /
    • pp.80-88
    • /
    • 2003
  • In order to establish the enzymatic hydrolysis system improving of taste and flavor in the preparation of soy protein hydrolysates using the enzymes with excellent hydrolytic ability and different hydrolysis pattern of soy protein, Degree of hydrolysis(DH) and surface hydrophobicity under the optimal conditions of enzyme reaction, hydrolysis patterns by the SDS electrophoresis and sensory evaluation of soy protein hydrolysates by enzyme reactions were investigated. Four enzyme reactions were highly activated at pH 7.0, 45$^{\circ}C$ under the optimal conditions. As result of changes on the pattern of soy-protein hydrolysates by SDS-electrophoresis, high molecular peptides of hydrolysates by No. 5(Mucor circinelloides M5) and No. 16(Bacillus megaterium B16) enzymes were slowly decrease and 66KD band of these were remained after 3hours reaction. Production of low molecular peptides of hydrolysates by No. 4(Aspergillus oryzae M4) and No. 95(Bacillus subtilis YG 95) enzymes were remarkably detected during the proceeding reactions. As results of HPLC analysis, low molecular peptides of 15∼70KD were mainly appeared during the proceeding enzyme reactions. And, the more DH was increased, the more SDS-surface hydrophobicity was decreased. Hydrolysates by No. 4 enzyme was not only the highest DH of all hydrolysates, but the strongest bitter taste in a sensory evaluation. Sweat taste among the hydrolysates showed little difference. But, when combinative enzymes were treated, combinative enzyme of No. 4(Aspergillus oryzae M4)and No. 16(Bacillus megaterium B16) showed the strongest sweat taste. In conclusion, we assumed that it will be possible to prepare the hydrolysates having functionality when soy-protein were hydrolyzed by these specific enzymes.

Isolation of calcium-binding peptides from porcine meat and bone meal and mussel protein hydrolysates (돼지 육골분 및 진주담치 단백질의 가수분해물 제조 및 칼슘 결합 물질의 분리)

  • Jung, Seung Hun;Song, Kyung Bin
    • Food Science and Preservation
    • /
    • v.22 no.2
    • /
    • pp.297-302
    • /
    • 2015
  • Calcium is one of the essential mineral for the humans due to its crucial physiological functions in the body. Calcium deficiency results in many diseases, such as osteoporosis. Therefore, calcium supplements are available as a functional food. However, most calcium supplements in the market have a limitation due to poor absorption and low bioavailability. Thus, calcium-chelated peptides for improving the absorption rate of calcium have been isolated from foods including porcine meat and bone meal (MBM), and mussel using the enzymatic hydrolysis of their protein. The hydrolysates of food were ultra-filtered in order to obtain small peptides less than 3 kDa and the Ca-binding peptides were isolated via the anion exchange chromatography. The binding activity and concentration of Ca-binding pepetides were determined. In particular, the MBM and mussel protein hydrolysates were fractionated by mono Q and Q-Sepharose, respectively. As a result, among the fractions, the fractions of MBM F2 and mussel F3 showed the highest Ca-binding activity. These results suggest that MBM and mussel protein hydrolysates can be used as calcium supplements.

Allergenicity Reduction of Milk (우유에서의 알레르겐 저감화 방법)

  • Ha, Woel-Kyu
    • Journal of Dairy Science and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.27-36
    • /
    • 2008
  • This review was written to introduce updated data on the structure and function of the major milk proteins identified as allergens, the characterization of their epitopes in each allergenic milk proteins, and the reduction of milk protein allergenicity. Most mammalian milk protein, even protein present at low concentration, are potential allergens. Epitopes identified in milk proteins are both conformational(structured epitope) and sequential epitopes(linear epitope), throughout the protein molecules. Epitopes on casein and whey proteins are reported to be sequential epitope and conformational epitopes, respectively. Conformational epitopes on whey protein are changed into sequential epitope by heat denaturation during heat treatment. Several methods have been proposed to reduce allergenicity of milk proteins. Most ideal and acceptable method to make hypoallergenic milk or formula, so far, is the hydrolysis of allergenic milk proteins by enzymes that has substrate specificity, such as pepsin, trypsin, or chymotrypsin. Commercial formulas based on milk protein hydrolysate are available for therapeutic purpose, hypoantigenic formula for infants from families with a history of milk allergy and hypoallergenic formula for infants with existing allergic symptoms.

  • PDF