DOI QR코드

DOI QR Code

Hydrolysis of Polylactic Acid Fiber by Lipase from Porcine pancreas

  • Lee, So-Hee (Dept. of Clothing & Textiles, Sookmyung Women's University) ;
  • Song, Wba-Soon (Dept. of Clothing & Textiles, Sookmyung Women's University)
  • Received : 2011.04.07
  • Accepted : 2011.05.25
  • Published : 2011.06.30

Abstract

This study is to optimize the enzymatic processing conditions of Polylactic Acid (PLA) fiber using lipase from Porcine pancreas as an environmental technology. Hydrolytic activity dependent on pH, temperature, enzyme concentration, and treatment time, and structural change of PLA fiber were evaluated. The PLA fiber hydrolysis by lipase was maximized at 50% (o.w.f) lipase concentration $50^{\circ}C$ for 120 minutes under pH 8.5. There was a change of the protein absorbance in the treatment solution before and after the lipase treatment. In addition, there was no substantial change in the molecular and crystalline structures of PLA by lipase treatment as confirmed by DSC, XRD, and FT-IR.

Keywords

References

  1. Bisswanger, H. (2004). Practical enzymology. Darmstadt: Wiley-VCH.
  2. Blackburn, R. S. (2005). Biodegradable and sustainable fibres. Cambridge: Woodhead Publishing Limited.
  3. Buchholz, K., Kasche, V., & Bornscheuer, U. T. (2005). Biocatalysts and enzyme technolgy. Weinheim: Wiley-VCH.
  4. Cai, H., Dave, V., Gross, R. A., & McCarthy, S. P. (1996). Effects of physical aging, crystallinity, and orientation on the enzymatic degradation of poly (lactic acid). Journal of Polymer Science Part B: Polymer Physics, 34(16), 2701-2708. https://doi.org/10.1002/(SICI)1099-0488(19961130)34:16<2701::AID-POLB2>3.0.CO;2-S
  5. Cam, D., Hyon, S. H., & Ikada, Y. (1995). Degadation of high molecular weight poly (L-lactide) in alkaline medium. Biomaterials, 16(11), 833-843. https://doi.org/10.1016/0142-9612(95)94144-A
  6. Cavaco-Paulo, A., & Guebitz, G. M. (2003). Textile processing with enzymes. Washington D.C.: CRC Press.
  7. Drumright, R. E., Gruber, P. R., & Henton, D. E. (2000). Poly-lactic acid technology. Advanced Materials, 12(23), 1841-1846. https://doi.org/10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
  8. Farrington, D. W., Lunt, J., Davies, S., & Blackburn, R. S. (2005). Biodegradable and sustainable fibres. Cambridge: Woodhead Publishing Limited.
  9. Guebitz, G. M., & Cavaco-Paulo, A. (2007). Enzymes go big: Surface hydrolysis and functionalisation of synthetic polymers. Trends in Biotechnology, 26(1), 32-38.
  10. Kim, H. R., & Song, W. S. (2006). Lipase treatment of polyester fabrics. Fibers and Polymers, 7(4), 339-343. https://doi.org/10.1007/BF02875764
  11. Kim, J. (2005). Bio-scouring of polylactide fabric. Journal of Industrial Technology, 13, 35-49.
  12. Korea Textile Inspection & Testing Institute (2005). Continuos process and printing of polylactic fiber (1), July 2005 (No.62). Seoul: Korea Textile Inspection & Testing Institute.
  13. Lee, K. S. (2007). Enzyme theory and application. Seoul: Daihaks Publishing Company.
  14. Lee, S. H., Kim, H. R., Lee, B. H., & Song, W. S. (2010). Enzymatic hydrolysis of chitosan fiber using cellulase andpapain. Textile Science and Engineering, 47(3), 212-221.
  15. Lee, S. H., Kim, H. R., & Song, W. S. (2009). Cutinase treatment of cotton fabrics. Fibers and Polymers, 10(6), 802-806. https://doi.org/10.1007/s12221-009-0802-5
  16. Lee, S. H., & Song, W. S. (2009). Enzymatic hydrolysis of PLA fibers. Proceedings of the Korean Society of Clothing and Textiles, Korea, 34, 162.
  17. Lee, S. H., & Song, W. S. (2010). Surface modification of polyester fabrics by enzyme treatment. Fibers and Polymers, 11(1), 54-59. https://doi.org/10.1007/s12221-010-0054-4
  18. Lee, S. H., & Song, W. S. (2011). Enzymatic hydrolysis of polylactic acid fiber. Applied Biochemistry and Biotechnology, 164(1), 89-102. https://doi.org/10.1007/s12010-010-9117-7
  19. Li, B. H., & Yang, M. C. (2006). Improvement of thermal and mechanical properties of poly (L-lactic acid) with 4,4-methylene diphenyl diisocyanate. Polymers for Advanced Technologies, 17(6), 439-443. https://doi.org/10.1002/pat.731
  20. Lin, L. H., Liu, H. J., & Yu, N. K. (2007). Morphology and thermal properties of poly (L-lactic acid)/organoclay nanocomposites. Journal of Applied Polymer Science, 106(1), 260-266. https://doi.org/10.1002/app.26477
  21. Mayumi, D., Akutsu-Shigeno, Y., Uchiyama, H., Nomura, N., & Nakajima-Kambe, T. (2008). Identification and characterization of novel poly (DL-lactic acid) depolymerases from metagenome. Applied Microbiology and Biotechnology, 79(5), 743-750. https://doi.org/10.1007/s00253-008-1477-3
  22. Oksman, K., Skrifvars, M., & Selin, J. F. (2003). Natural fibres as reinforcement in polylactic acid (PLA) composites. Composites Science and Technology, 63(9), 1317-1324. https://doi.org/10.1016/S0266-3538(03)00103-9
  23. Park, K. I., & Xanthos, M. (2009). A study on the degradation of polylactic acid in the presence of phosphonium ionic liquids. Polymer Degradation and Stability, 94(5), 834-844. https://doi.org/10.1016/j.polymdegradstab.2009.01.030
  24. Reddy, N., Nama, D., & Yang, Y. (2008). Polylactic acid/polypropylene polyblend fibers for better resistance to degradation. Polymer Degradation and Stability, 93(1), 233-241. https://doi.org/10.1016/j.polymdegradstab.2007.09.005
  25. Sawada, K., Urakawa, H., & Ueda, M. (2007). Modification of polylactic acid fiber with enzymatic treatment. Textile Research Journal, 77(11), 901-905. https://doi.org/10.1177/0040517507082331
  26. Tokiwa, Y., & Jarerat, A. (2004). Biodegradation of poly (L-lactide). Biotechnology Letters, 26(10), 771-777. https://doi.org/10.1023/B:BILE.0000025927.31028.e3

Cited by

  1. Biodegradation of polylactic acid (PLA) fibers using different enzymes vol.22, pp.6, 2014, https://doi.org/10.1007/s13233-014-2107-9
  2. Dyeing Properties on Polylactic Acid (PLA) Fabrics by Disperse Dyes vol.37, pp.7, 2013, https://doi.org/10.5850/JKSCT.2013.37.7.952
  3. Modification of polylactic acid fabric by two lipolytic enzyme hydrolysis vol.83, pp.3, 2013, https://doi.org/10.1177/0040517512458345
  4. Effect of Enzymatic Hydrolysis on Polylactic Acid Fabrics by Lipases from Different Origins vol.36, pp.6, 2012, https://doi.org/10.5850/JKSCT.2012.36.6.653
  5. Hydrolytic stability of PLA yarns during textile wet processing vol.14, pp.11, 2013, https://doi.org/10.1007/s12221-013-1912-7
  6. Improvement of hydrophilicity of polylactic acid (PLA) fabrics by means of a proteolytic enzyme from Bacillus licheniformis vol.17, pp.8, 2016, https://doi.org/10.1007/s12221-016-5923-z