• Title/Summary/Keyword: protein fatty acid

Search Result 1,690, Processing Time 0.028 seconds

Changes of Protein and Lipid Composition During Germination of Perilla frutescens Seeds (들깨 종자의 발아에 따른 단백질 및 지방의 조성 변화)

  • 정대수;김현경
    • Journal of Life Science
    • /
    • v.8 no.3
    • /
    • pp.318-325
    • /
    • 1998
  • To investigate changes in protein and total lipid contents, seed storage protein pattern, and fatty acid composition of germination perilla(Perilla frutescens) seeds. Also, the corresponding value components in cotyledons, hypocotyles and roots were measured according to germination stage. The results were summarized as follows ; During germination, pertein and total lipid contents of Yepsilldalggae and Kwangyang cultivar were decreased continuously. In particular, protein contents rapidly decreased to the 3 days after germination(DAG), and then total lipid contents rapidly decreased between 3 DAG and 10 DAG. In changes of protein and total lipid contents of cotyledons, protein contents of Yeupsildalggae was increased during the germination, but Kwangyang cultivar was decreased during the same periods. The total lipids contents of Yeupsildalggae and Kwangyang cultivar were decreased during the germination. According to SDS-PAGE analysis, there was no detectible polypeptide bands on the gel before seed germination suggesting that this may be due to the rapid degradation of the storage proteins in the mature seed by hydrolyttic enzymes during the stage. During germinatation , the polypeptide band with 27$\sim$28KD of Yeupsildalggae and Kwangyang cultivar were accumulated gradually. In changes of fatty acid composition of total lipid of Yeupsildalggae and Kwangyang cultivar , saturated fatty acids such as palmitic acid and stearic acid increased during the germination. On the other hand, unsaturated fatty acid such as linoleic acid and linolenic acid decreased during the same periods. However, oleic acid increased to the 5 DAG, and then was repidly decreased.

  • PDF

Physiological Responses of Oxygen-Tolerant Anaerobic Bifidobacterium longum under Oxygen

  • Ahn, Jun-Bae;Hwang, Han-Joon;Park, Jong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.443-451
    • /
    • 2001
  • In order to investigate what kind of response anaerobic bifidobacteria has on oxygen stress, five oxygen-tolerant bifidobacteria were isolated from human fecal samples. All were temporarily identified as Bifidobacterium longum through an analysis of carbohydrate utilization patterns and cellular fatty acid profiles. In the presence of oxygen, the lag phase became extended and the cell growth was suppressed. Bifidobacterial cell was able to remove dissolved oxygen in an early stage of growth and to overcome oxygen stress to a certain extent. The cell became long n size and showed a rough surface containing many nodes which were derived from abnormal or incomplete cell division. Cellular fatty acid profiled changed remarkably under a partially aerobic condition, so that the carbon chain of cellular fatty acid became short. All the dimethyl acetals originated from plasmalogen were reduced, any cyclopropane fatty acid, 9, 10-methyleneoctadecanoic acid ($C_{19:0}cyc9,10$), was increased remarkably. Oxygen stress induced a 5.5 kD protein in B. longum JI 1 of the oxygen-teolerant bifidobacteria, that was named Osp protein, and its N-terminal amino acid sequence was as follows: unknown amino acid-Thr-Gly-Val-Arg-Phe-Ser-Asp-Asp-Glu. Therefore, the oxygen-tolerant bifidobacteria seemed to defend against oxygen stress byincreasing the content of short fatty acid and cyclopropane fatty acid, and induction of an oxygen stress protein, but not the plasmalogen.

  • PDF

Evaluation of Three Candidate Genes Affecting Fatty Acid Composition in Pigs

  • Maharani, Dyah;Jung, Yeon-kuk;Jo, Cheorun;Jung, Woo-Young;Nam, Ki-Chang;Seo, Kang-Seok;Lee, Seung-Hwan;Lee, Jun-Heon
    • Food Science of Animal Resources
    • /
    • v.32 no.1
    • /
    • pp.6-12
    • /
    • 2012
  • The association of three candidate genes, fatty acid synthase (FASN), microsomal triglyceride transfer protein (MTTP) and fatty acid binding protein 3 (FABP3), with fatty acid (FA) composition in Duroc pigs was investigated. Identified single nucleotide polymorphisms (SNPs) were used for polymerase chain reaction-restriction fragment length polymorphism genotyping. The c.265C>T SNP of FASN gene was significantly associated with high levels of palmitoleic acid (C16:1) (p<0.05), oleic acid (C18:1) (p<0.01), and mono-unsaturated fatty acid (MUFA) (p<0.01), but low levels of linoleic acid (C18:2) (p<0.01), alpha linolenic acid (C18:3) (p<0.05), and poly-unsaturated fatty acid (PUFA) (p<0.01) in animals having the CT genotype. The c.2573T>C SNP in the MTTP gene had a significant effect only in elevating the level of palmitoleic acid (C16:1) (p<0.05) in heterozygote animals. The polymorphism in FABP3 showed no significant effects on any fatty acid composition traits. These results suggest that the identified SNPs in the FASN and MTTP genes can be useful markers for selecting Duroc pigs having desirable healthy fatty acid composition.

The Role of Fatty Acid Binding Protein in the Fatty Liver Induced by Alcohol or High Cholesterol Diet in Rats (알코올 및 고콜레스테롤 식이로 유도된 흰쥐의 지방간에서 지방산 결합단백질의 역할 및 특성)

  • 김혜경
    • Journal of Nutrition and Health
    • /
    • v.32 no.6
    • /
    • pp.628-636
    • /
    • 1999
  • There is a marked increase in geriatric disease, especially liver disease, due to the continuous increase in alcohol and fat consumption. Since the fatty liver, induced by alcohol or fat, is basically from abnormalities in the lipid metabolism, it is possible that fatty acid binding protein(FABP) which is related to the fatty acid metabolism may also be abnormal in these livers. FABP is a small molecular weight protein family present in cytosol in high concentration. It has been proposed as a fatty acid transfer protein and as a binding protein responsible for controlling intracellular free fatty acid concentration. In this research, we have examined the relationship between liver FABP and fatty liver induced by alcohol or high cholesterol diet. Rats were fed one of either semipurified liquid diets; control diet containing 65% carbohydrate, 20% protein, and 15% fat or high cholesterol diet containing 1%(w/w) cholesterol or alcohol diet containing 37% of alcohol instead of carbohydrate. After 5 weeks of feeding period, all rats received commercial chow diet for 5 weeks to examine recovery effect. Liver and blood samples were collected at 0, 1, 3, 5 and 10 weeks to analyze lipid compositions. FABP was purified from liver cytosol and injected to rabbit to obtain antiserum. Liver FABP amount was determined by SDS-PAGE and western blotting methods. Fatty acid binding capacity was determined by binding of 14Cpalmitate with the delipidated liver cytosol. Consumption of alcohol increased serum cholesterol, triglyceride concentration and decreased HDL-cholesterol concentration after 5 weeks. Serum apolipoprotein B concentration increased after 3 weeks and LDL-cholesterol and apolipoprotein A concentration changed after 1 week. Liver cholesterol and triglyceride concentration increased after 3 weeks. Consumption of high cholesterol diet changed liver and serum lipid composition after 3 weeks. Swiching to normal diet for 5 weeks did not normalize most of lipid composition in serum and liver except serum and liver except serum cholesterol, triglyceride and liver cholesterol. Liver cytosol FABP content and the fatty acid binding capacity decreased dramatically after 1 week with alcohol consumption. This results indicate that FABP content changes before the changes before the changes of blood or liver lipid composition, suggesting changes of FABP may cause development of the fatty liver induced by alcohol and can be used as an index of detecting a early development of fatty liver.

  • PDF

Changes of Major Componets During Germination of Sesame (Sesamum indicum L.) Seeds (발아의 경과에 따른 참깨 종실내 주요성분의 변화)

  • 김현경;정대수
    • Journal of Life Science
    • /
    • v.8 no.2
    • /
    • pp.137-144
    • /
    • 1998
  • These studies were undertaken to investigate changes of major components occuring during germination of sesame (Sesamum indicum L.) seeds, Changes of total lipid and protein contents, and fatty acid composition were determined. Also, the correponding values of various components in cotyledons, hypocotyls and roots were measured according to germination stage. The results were summarized as follows; During germination, total lipid and protein contents decreased. In particular, protein contents rapidly decreased to the 3 days after gemination(DAG), and then total lipid contents rapidly decreased. In changes of total lipid and protein of cotyledons, hypocotyles and roots detected at the 10, 15 and 20 DAG, some variations were determined. The contents of lipid and protein in hypocotyls rapidly decreased, but since than no changes were observed. In contract, in roots similar changes patterns were observed, while since 15 DAG a rapidly increase was wxamined. In fatty acid composition of total lipid ,saturatedmfatty acids such as palmitic acid increased during the germination. On the other hand, unsaturated fatty acid such as olic acid and linoleic acid decreased during the same periods. In changes of fatty acid composition of total lipid of cotyledons, hypocotlys and roots, saturated fatty acids such as palmitic acid and stearic acid increased during the germination. However, linoleic acid decreased during the same germination suggesting that this may be due to the rapid degradation. However, linoleic acid decreased during the same periods. According to SDS-PAGE analysis, there was no detectible polypeptide bands on the gel before seed germination suggesting that this may be due to the rapid degradation of the storage peotein in the mature seed by hydrolytic enzymes during the stag. As germination continued polypeptide bands, one with 40KD, two with 32∼34Kd and one with 24KD, were detected on the gel.

  • PDF

Identification of the SNP (Single Nucleotide Polymorphism) for Fatty Acid Composition Associated with Beef Flavor-related FABP4 (Fatty Acid Binding Protein 4) in Korean Cattle

  • Oh, Dong-Yep;Lee, Yoon-Seok;La, Boo-Mi;Yeo, Jung-Sou
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.7
    • /
    • pp.913-920
    • /
    • 2012
  • In this study, we investigated the relationship between unsaturated fatty acids influencing beef flavor and four types of SNPs (c.280A>G, c.388G>A, c.408G>C and c.456A>G) located at exon 2, 3 and 4 of the FABP4 gene, which is a fatty acid binding protein 4 in Korean cattle (n = 513). When analyzing the relationship between single genotype, fatty acids and carcass trait, individuals of GG, GG, CC and GG genotypes that are homozygotes, had a higher content of unsaturated fatty acids and marbling scores than other genotypes (p<0.05). Then, haplotype block showed strong significant relationships not only with unsaturated fatty acids (54.73%), but also with marbling scores (5.82) in $ht1{\times}ht1$ group (p<0.05). This $ht1{\times}ht1$ group showed significant differences with unsaturated fatty acids and marbling scores that affected beef flavor in Korean cattle. Therefore, it can be inferred that the $ht1{\times}ht1$ types might be valuable new markers for use in the improvement of Korean cattle.

Seed Protein Content and Fatty Acid Composition of Soybeans collected from Southwestern Islands in Korea

  • Kwon, Byung-Sun;Shin, Jeong-Sik;Choi, Seong-Kyu
    • Plant Resources
    • /
    • v.5 no.3
    • /
    • pp.181-186
    • /
    • 2002
  • The 129 soybean genotypes were collected in 43 island locations from January to May 2001. Seeds of 129 genotypes collected were analyzed for crude protein and fatty acid composition contents. The crude protein content was averaged to 41.1 % and ranged from 37.4% to 44.4%. The average palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid content were 12.0%, 4.0%, 23.2%, 55.5%, and 7.9%, and the ranges of those were 10.0% to 15.0%, 3.0% to 4.8%, 21.7% to 25.5%, 50.2% to 58.3% and 7.0% to 12.0%, respectively. Heritabiliries of palmitic acid, oleic acid, linoleic acid, and crude protein were higher, but that of stearic acid and linolenic acid were relatively lower. The genotypic correlation coefficients between crude protein and oleic acid showed highly positive correlation, but that of linoleic acid showed highly opsitive correlation, but that of linoleic acid showed highly negative correlation and also palmitic acid, stearic acid and linolenic acid showed negative correlation.

  • PDF

Characterization of Fatty Acid Digestion of Beijing Fatty and Arbor Acres Chickens

  • Yuan, J.M.;Guo, Y.M.;Yang, Y.;Wang, Z.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.8
    • /
    • pp.1222-1228
    • /
    • 2007
  • The aim of this experiment was to compare the characterization of fatty acid digestion of Beijing Fatty (BF) and Arbor Acres (AA) chickens. One-day-old male AA and BF chickens were raised in the same house, and fed with the same diet. We first evaluated utilization of dietary fatty acids in chickens by the total collection procedure, and chickens were then killed to compare the abundance of intestinal mRNA expression of liver-fatty acid binding protein (L-FABP) and intestinal-fatty acid binding protein (I-FABP) by Real-time PCR, and also the pH of intestinal mucosa at 3 and 6 weeks of age. Another group of chickens were sampled at 6 weeks of age to compare the total bile acid concentration in serum, and lipase activity in contents of the small intestine. Results showed that compared to AA chickens, BF chickens had higher lipase activity in the content of the small intestine (p<0.05), greater total bile acid content in portal vein blood (p<0.05) at 6 weeks of age, lower intestinal mucosal pH at both 3 weeks (p<0.05) and 6 weeks (p<0.05) of age, and higher abundance of liver-fatty acid binding protein (L-FABP) mRNA expression in intestine tissues at 6 weeks of age (p<0.05), and higher digestibility of fatty acids at both 3 and 6 weeks (p<0.05) of age. There was no difference in I-FABP mRNA expression between AA and BF chickens at either age. Thus, BF chickens had greater fatty acids utilization than AA chickens that was associated with L-FABP, lipase activity, bile acid content and intestinal mucosal pH.

Fatty Acids and Protein Recovery of Squid Viscera with Supercritical Carbon Dioxide

  • Park, Ji-Yeon;Back, Sung-Sin;Chun, Byung-Soo
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.3
    • /
    • pp.206-212
    • /
    • 2006
  • Supercritical carbon dioxide ($SCO_2$) extraction was investigated as a method for protein-sourcing material from squid viscera. To find the optimum conditions, the extraction of squid viscera using $SCO_2$ was performed under the conditions of temperature range from 35 to $45^{\circ}C$ and constant pressure 25 MPa using Hewlett-Packard 7680T. Also from result of SDS-PAGE, the protein denaturation was minimized when using $SCO_2$ extraction. And the major amino acids in the squid viscera were glutamic acid, aspartic acid, lysine, leucine, arginine, alanine, glycine, isoleucine, and valine. The main fatty acids from squid viscera were myristic acid, palmitic acid, stearic acid, heneicosanoic acid, palmitoleic acid, elaidic acid, oleic acid, eicosenoic acid, EPA (eicosapentaenoic acid), and DHA (docosahexaenoic acid).

  • PDF

Effect of n-3 Fatty Acids on Estrogen Dependency and Protein Kinase C Activity of Human Breast Cancer Cell

  • Cho, Sung-Hee;Oh, Sun-Hee;Park, Hee-Sung
    • Preventive Nutrition and Food Science
    • /
    • v.1 no.2
    • /
    • pp.220-226
    • /
    • 1996
  • To investigate the effect of long chain n-3 polyunsaturated fatty acids on breast cancer cell growth, estrogen-dependent MCF-7 human breast cancer cells were cultured serum-free DMEM media containing 0.5$\mu\textrm{g}$/ml of differnet kinds of fatty acids; linoleic acid(LA), arachidonic acid(AA), eicosapentaenoic acid(EPA) and docosahexaenoic acid acid(DHA) and 1, 0.1, 0.2, 0.5and 1.0ng/ml 17$\beta$-estradiol as well as 10$\mu\textrm{g}$/mi insulin and 1.25 mg/ml delipidized bovine serum albumin for 3 days. Cell growth monitored by MTT assay was lower in DHA and EPA treatments as compared to LA treatment, but not with AA treatment. Estrogen concentrations at which cell growth was initially stimulated were 0.1ng/ml for LA and DHA treatments and 0.2ng/ml for EPA and AA treatments, but the degree of stimulation was 25~30% lower in DHA and EPA treatments than in LA treatment. Fatty acid analysis showed that each fatty acid in culture medium was well incoporated into celluar lipid. Protein kinase C activity of cells was most elevated in LA treatment from 2 to 8 hours of culture followed by DHA, EPA, and AA treatments. It is concluded that inhibitions of n-3 DHA and EPA on breast cancer cell growth as compard with n-6 LA is mediated via changes in membrane fatty acid composition reducing estrogen sensitivity and increasing protein kinase C activity.

  • PDF