Physiological Responses of Oxygen-Tolerant Anaerobic Bifidobacterium longum under Oxygen

  • Published : 2001.06.01

Abstract

In order to investigate what kind of response anaerobic bifidobacteria has on oxygen stress, five oxygen-tolerant bifidobacteria were isolated from human fecal samples. All were temporarily identified as Bifidobacterium longum through an analysis of carbohydrate utilization patterns and cellular fatty acid profiles. In the presence of oxygen, the lag phase became extended and the cell growth was suppressed. Bifidobacterial cell was able to remove dissolved oxygen in an early stage of growth and to overcome oxygen stress to a certain extent. The cell became long n size and showed a rough surface containing many nodes which were derived from abnormal or incomplete cell division. Cellular fatty acid profiled changed remarkably under a partially aerobic condition, so that the carbon chain of cellular fatty acid became short. All the dimethyl acetals originated from plasmalogen were reduced, any cyclopropane fatty acid, 9, 10-methyleneoctadecanoic acid ($C_{19:0}cyc9,10$), was increased remarkably. Oxygen stress induced a 5.5 kD protein in B. longum JI 1 of the oxygen-teolerant bifidobacteria, that was named Osp protein, and its N-terminal amino acid sequence was as follows: unknown amino acid-Thr-Gly-Val-Arg-Phe-Ser-Asp-Asp-Glu. Therefore, the oxygen-tolerant bifidobacteria seemed to defend against oxygen stress byincreasing the content of short fatty acid and cyclopropane fatty acid, and induction of an oxygen stress protein, but not the plasmalogen.

Keywords

References

  1. Kor. J. Appl. Microbiol. Biotechnol. v.26 Isolation and characterization of oxygen-tolerant mutant of Bifidobacterium longum Ahn, J. B.;K. Y. Kim;J. H. Park
  2. Korean Patent 94-10747 The preparation of Kimchii with Bifidobacterium spp. Baik, U. H.;K. H. Park;S. K. Lee
  3. J. Biol. Chem. v.260 Increased superoxide radical production evokes inducible DNA repair in Escherichia coli Brawn, K.;I. Fridovich
  4. Arch. Biochem. Biophys. v.223 Biochemistry and physiological role of methionine sulfoxide residues in proteins Brot, N.;H. Weissbach
  5. Annu. Rev. Biochem. v.58 Biochemistry of oxygen toxicity Cadenas, E.
  6. Cell v.41 Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium Christman, M. F.;R. W. Morgan;F. S. Jacobson;B. N. Ames
  7. Arch. Mikrobiol. v.65 Factors determining the degree of anaerobiosis of Bifidobacterium strains De Vries, W.;A. H. Stouthamer
  8. Nucleic Acids Res. v.10 5,6-Saturated thymine lesions in DNA: Production by UV light and hydrogen peroxide Demple, B.;S. Linn
  9. Microbiol. Rev. v.55 Oxidative stress responses in Escherichia coli and Salmonella typhimurium Farr, S. B.;T. Kogomo
  10. J. Biol. Chem. v.266 Superoxide sensitivity of the Escherichia coli 6-phosphogluconate dehydratase Gardener, P.;I. Fridovich
  11. Appl. Environ. Microbiol. v.33 Stability of lactic acid bacteria to freezing as related to their fatty acid composition Goldberg, I.;L. Eschar
  12. Modern Nutrition in Health and Disease The roles of the intestinal flora Goldin, B. R.;A. H. Lichtenstein;S. L. Gorbach;M. E. Shils(ed.);V. R. Young(ed.)
  13. Probiotics - The Scientific Basis Probiotics for humans Goldin, B. R.;S. L. Gorbach;R. Fuller(ed.)
  14. J. Bacteriol. v.166 Characterization of Escherichia coli mutants completely defective in synthesis of cyclopropane fatty acids Grogan, D. W.;J. E. Cronan, Jr.
  15. Biochem. J. v.219 Role of free radicals and catalytic metal ions in human disease Halliwell, B.;J. M. C. Gutteridge
  16. J. Gen. Appl. Microbiol. v.24 Cellular fatty acid composition in methanol-utilizing bacteria Ikemoto, S.;K. Katoh;K. Komagata
  17. J. Biol. Chem. v.266 Assay of metabolic superoxide production in Escherichia coli Imlay, A. I.;I. Fridovich
  18. Korean J. Food Sci. Technol. v.26 Improved selective medium for isolation and enumeration of Bifidobacterium sp. Ji, G. E.;S. K. Lee;I. H. Kim
  19. J. Microbiol. Biotechnol. v.10 Comparative evaluation of probiotic activities of Bifidobacterium longum MK-G7 with commercial bifidobacterial strains Jung, H. K.;E. R. Kim;G. E. Ji;J. H. Park;S. K. Cha;S. L. Juhn
  20. J. Gen. Appl. Microbiol. v.15 Occurrence of plasmalogens in anaerobic bacteria Kamio, Y.;S. Kanegasaki;H. Takahashi
  21. J. Bacteriol. v.159 Biosynthesis of phospholipids in Clostridium butyricum: Kinetics of synthesis of plasmalogens and the glycerol acetal of ethanolamine plasmalogen Koga, Y.;H. Goldfine
  22. J. Biol. Chem. v.262 Alpha, β-dihydroxy-isovalerate dehydratase: A superoxide sensitive enzyme Kuo, C. F.;T. Mashino;I. Fridovich
  23. Proc. Natl. Acad. Sci. USA v.78 Turnover of bacterial glutamine synthetase: Oxidative inactivation precedes proteolysis Levine, R. L.;C. N. Oliver;R. M. Fulks;E. R. Stadtman
  24. Proc. Natl. Acad. Sci. USA v.83 Hydrogen peroxide-inducible proteins in Salmonella typhimurium overlap with heat shock and other stress proteins Morgan, R. W.;M. F. Christman;F. S. Jacobson;G. Storz;B. N. Ames
  25. FEMS Microbiol. Lett. v.61 Aerobic and anaerobic metabolism in a facultative anaerobe Ep01 lacking cytochrome, quinone and catalase Niimura, Y.;E. Koh;T. Uchimura;N. Ohara;M. Kozaki
  26. Proc. Natl. Acad. Sci. USA v.85 Improved tools for biological sequence comparison Pearson, W. R.;D. J. Lipman
  27. DNA and Free Radicals Oxidative stress and cell proliferation in vitro Poot, M.;H. Joenje;B. Halliwell(ed.);O. I. Aruoma(ed.)
  28. Appl. Environ. Microbiol. v.53 Gas chromatography analysis of cellular fatty acids and neutral monosaccharides in the identification of lactobacilli Rizzo, A. F.;K. Hannu;M. Ilkka
  29. J. Appl. Bacteriol. v.69 Evaluation of rapid methods for differentiation of Bifidobacterium species Roy, D.;P. Ward
  30. Bergey's Manual of Systematic Bacteriology v.Ⅱ Irregular nonsporing Gram-positive rods Scardovi, V.;P. H. A. Sneath(ed.);N. S. Mair(ed.);E. Shape(ed.)
  31. J. Dairy Sci. v.75 Relationship between oxygen sensitivity and oxygen metabolism of Bifidobacterium species Shimamura, S.;F. Abe;N. Ishibashi;H. Miyakawa;T. Yaeshima;T. Araya;M. Tomita
  32. J. Microbiol. Biotechnol. v.7 Activities of oxidative enzymes related with oxygen tolerance in Bifidobacterium sp. Shin, S. Y.;J. H. Park
  33. Kor. J. Appl. Microbiol. Biotechnol. v.26 Changes of oxidative enzymes and fatty acid composition of Bifidobacterium adolescentis and B. longum under anaerobic and aerated condition Shin, S. Y.;J. H. Park
  34. Trends Genet. v.6 Bacterial defenses against oxidative stress Storz, G.;A. T. Louis;S. B. Farr;B. N. Ames
  35. J. Dairy Res. v.62 Review article: Microbiological and technological aspects of milk fermented by bifidobacteria Tamime, A. Y.;V. E. Marshall;R. K. Robinson
  36. J. Bacteriol. v.108 Fatty acid composition of Bifidobacterium and Lactobacillus strains Veerkamp, J. H.
  37. J. Bacteriol. v.171 Escherichia coli proteins inducible by oxidative stress mediated by the superoxide radical Walkup, L. K. B.;T. Kogoma