Browse > Article
http://dx.doi.org/10.5713/ajas.2012.12078

Identification of the SNP (Single Nucleotide Polymorphism) for Fatty Acid Composition Associated with Beef Flavor-related FABP4 (Fatty Acid Binding Protein 4) in Korean Cattle  

Oh, Dong-Yep (School of Biotechnology, Yeungnam University)
Lee, Yoon-Seok (Charmpoom Hanwoo Research Institution, Charmpoom Hanwoo Co., Ltd.)
La, Boo-Mi (School of Biotechnology, Yeungnam University)
Yeo, Jung-Sou (School of Biotechnology, Yeungnam University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.25, no.7, 2012 , pp. 913-920 More about this Journal
Abstract
In this study, we investigated the relationship between unsaturated fatty acids influencing beef flavor and four types of SNPs (c.280A>G, c.388G>A, c.408G>C and c.456A>G) located at exon 2, 3 and 4 of the FABP4 gene, which is a fatty acid binding protein 4 in Korean cattle (n = 513). When analyzing the relationship between single genotype, fatty acids and carcass trait, individuals of GG, GG, CC and GG genotypes that are homozygotes, had a higher content of unsaturated fatty acids and marbling scores than other genotypes (p<0.05). Then, haplotype block showed strong significant relationships not only with unsaturated fatty acids (54.73%), but also with marbling scores (5.82) in $ht1{\times}ht1$ group (p<0.05). This $ht1{\times}ht1$ group showed significant differences with unsaturated fatty acids and marbling scores that affected beef flavor in Korean cattle. Therefore, it can be inferred that the $ht1{\times}ht1$ types might be valuable new markers for use in the improvement of Korean cattle.
Keywords
Fatty Acid Binding Protein 4 (FABP4); Korean Cattle; Unsaturated Fatty Acid; Haplotype; Beef Flavor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Waldman, R. C., G. G. Suess, R. W. Lewis, R. W. Bray and V. H. Brungardt. 1965. Certain fatty acids of bovine tissue and their association with carcass characteristics. J. Anim. Sci. 24:869.
2 Wang, N., J. M. Akey, K. Zhang, R. Chakraborty and L. Jin. 2002. Distribution of recombination crossovers and the origin of haplotype blocks: the interplay of population history, recombination, and mutation. Am. J. Hum. Genet. 71:1227-1234.   DOI   ScienceOn
3 Woollet, L. A., D. K. Spady and J. M. Dietschy. 1992. Saturated and unsaturated fatty acid independently regulate low density lipoprotein receptor activity and production rate. J. Lipid Res. 33:77-78.
4 Yosimura, T. and K. Namikawa. 1983. Influence of breed, sex and anatomical location on lipid and fatty acid composition of bovine subcutaneous fat. Jpn. J. Zootech. Sci. 54:97-100.
5 Mozaffarian, D., A. Ascherio, F. B. Hu, M. J. Stampfer and W. C. Willett. 2005. Interplay between different polyunsaturated fatty acids and risk of coronary heart disease in man. Circulation 111:257-164.   DOI   ScienceOn
6 Narukami, T., S. Sasazaki, K. Oyama, T. Nogi, M. Taniguchi and H. Mannen. 2011. Effect of DNA polymorphism related to fatty acid composition in adipose tissue of Holstein cattle. J. Anim. Sci. 82:406-411.   DOI   ScienceOn
7 O'Keefe, P. W., G. H. Wellington, L. R. Mattick and J. R. Stouffer. 1968. Composition of bovine muscle lipids at various carcass locations. J. Food Sci. 33:188-192.   DOI
8 Pannier, L., A. M. Mullen, R. M. Hanill, P. C. Stapleton and T. Sweeney. 2010. Association analysis of single nucleotide polymorphism in DGAT1, TG and FABP4 genes and intramuscular fat in crossbred Bos Taurus cattle. Meat Sci. 85: 515-518.   DOI   ScienceOn
9 Rudel, L. L., J. S. Park and J. K. Sawyer. 1995. Compared with dietary monounsaturated and saturated fat, polyunsaturated fat protects African green monkeys from coronary artery atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 15:2101-2110.   DOI
10 Ryu, J., Y. Kim, C. Kim, J. Kim and C. Lee. 2011. Association of bovine carcass phenotypes with genes in an adaptive thermogenesis pathway. Mol. Biol. Rep. DOI: 10.1007/s11033-011-0880-5
11 Sturdivant, C. A., D. K. Lunt, G. C. Smith and S. B. Smith. 1992. Fatty acid composition of subcutaneous and intramuscular adipose tissue and M. longissimus dorsi of Waygu cattle. Meat Sci. 32:449-458.   DOI   ScienceOn
12 Tsuji, S. 2008. Kobe beef as international brand. Symposium of Gyeungbuk Hanwoo Cluster.
13 Vreeland, W. N., R. J. Meagher and A. E. Barron. 2002. Multiplexed, highthroughput genotype by single_base extension and endlabeled free solution electrophoresis. Anal. Chem. 74:4328-4333.   DOI   ScienceOn
14 Duplus, E., M. Glorian and C. Forest. 2000. Fatty acid regulation of gene transcription. J. Biol. Chem. 267:30749-30752.
15 Folch, J., M. Lee and G. H. Sloane Stanley. 1957. A simple method for the isolation and purification of total lipids from animal tissue. J. Biol. Chem. 226:497-509.
16 Hoashi, S., T. Hinenoya, A. Tanaka, H. Ohsaki, H. Sasazaki, M. Taniguchi, K. Oyama, M. Mukai and H. Mannen. 2008. Association between fatty acid compositions and genotypes of FABP4 and LXR-alpha in Japanese Black cattle. BMC Genet. 9:84.
17 Jeremiah, I. E. 1996. The influence of subcutaneous fat thickness and marbling on beef. Food Res. Int. 29:513-520.   DOI   ScienceOn
18 Laborde, F. L., I. B. Mandell, J. J. Tosh, J. W. Wilton and J. G. Buchanan-Smith. 2001. Breed effects on growth performance, carcass characteristics, fatty acid composition, and palatability attributes in finishing steers. J. Anim. Sci. 79:355-365.
19 Mannen, H. 2011. Identification and utilization of genes associated with beef qualities. J. Anim. Sci. 82:1-7.   DOI   ScienceOn
20 Lee, S. H., J. H. J. Van der werf, S. H. Lee, E. W. Park, S. H. Oh, J. P. Gibson and J. M. Thompson. 2010. Genetic polymorphisms of the bovine fatty acid binding protein 4 gene are significantly associated with marbling and carcass weight in Hanwoo (Korean Cattle). Anim. Genet. 41:442-444.
21 Matsubara, K., Y. Inoue, K. Tahara and K. Nakagawa. 1998. Quality of and consumer preference for marketing beef. Animal Husbandry 34:10-15.
22 Melton, S. L., M. Amiri, G. W. Davis and W. R. Backus. 1982. Flavor and chemical characteristics of ground beef from grass-, forage-, grain- and grain-finished steers. J. Anim. Sci. 55:77-87.
23 Michal, J. J., Z. W. Zhang, C. T. Gaskins and Z. Jiang. 2006. The bovine fatty acid binding protein 4 gene is significantly associated with marbling and subcutaneous fat depth in Wagyu${\times}$Limousin F2 crosses. Anim. Genet. 37:400-402.   DOI   ScienceOn
24 Chmurzynska, A. 2006. The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism. J. Appl. Genet. 47:39-48.   DOI
25 Amri, E. G., G. Ailhaud and P. A. Grimaldi. 1994. Fatty acid as signal transducing molecules: involvement in the differentiation of preadipose to adipose cells. J. Lipid. Res. 35: 930-937.
26 Barret, J. C., B. Fry, J. Maller and M. J. Daly. 2005. Haploview: anaylsis and visualization of LD and haplotype maps. Bioinformatics 21:263-265.   DOI   ScienceOn
27 Cameron, N. D. and M. B. Enser. 1991. Fatty acid composition of lipid in longissimus dorsi muscle of Duroc and British landrace pigs and its relationship with eating quality. Meat Sci. 29:295-307.   DOI   ScienceOn
28 Cho, S., T. S. Park, D. H. Yoon, H. S. Cheong, S. Namgoong, B. L. Park, H. W. Lee, C. S. Han, E. M. Kim, Il-C. Cheng, H. Kim and H. D. Shin. 2007. Identification of genetic polymorphism in FABP3 and FABP4 and putative association with bak fat thickness in Korean native cattle. BMB Report 41:29-34.
29 Damcoot, C. M., S. P. Moffett, E. Feingold, M. M. Barmade, J. A. Marshall, R. F. Hamman and R. F. Ferrel. 2004. Genetic variation in fatty acid-binding protein-4 and peroxisome proliferator-activated receptor gamma interactively influence insulin sensitivity and body composition in male. Metab. Clin. Exp. 53:303-309.   DOI   ScienceOn
30 Dryden, F. D. and J. A. Marchello. 1970. Influence of total lipid and fatty acid composition upon the palatability of three bovine muscles. J. Anim. Sci. 31:36-41.