• 제목/요약/키워드: protein carbonyl

검색결과 121건 처리시간 0.041초

Oxidative Modification of Cytochrome c by Hydrogen Peroxide

  • Kim, Nam Hoon;Jeong, Moon Sik;Choi, Soo Young;Kang, Jung Hoon
    • Molecules and Cells
    • /
    • 제22권2호
    • /
    • pp.220-227
    • /
    • 2006
  • Oxidative alteration of mitochondrial cytochrome c has been linked to disease and is one of the causes of proapoptotic events. We have investigated the modification of cytochrome c by $H_2O_2$. When cytochrome c was incubated with $H_2O_2$, oligomerization of the protein increased and the formation of carbonyl derivatives and dityrosine was stimulated. Radical scavengers prevented these effects suggesting that free radicals are implicated in the $H_2O_2$-mediated oligomerization. Oligomerization was significantly inhibited by the iron chelator, deferoxamine. During incubation of deoxyribose with cytochrome c and $H_2O_2$, damage to the deoxyribose occurred in parallel with the release of iron from cytochrome c. When cytochrome c that had been exposed to $H_2O_2$ was analyzed by amino acid analysis, the tyrosine, histidine and methionine residues proved to be particularly sensitive. These results suggest that $H_2O_2$-mediated cytochrome c oligomerization is due to oxidative damage resulting from free radicals generated by a combination of the peroxidase activity of cytochrome c and the Fenton reaction of free iron released from the oxidatively-damaged protein.

Protective Effect of Dietary Buchu (Chinese chives) Against Oxidative Damage from Aging and Ultraviolet Irradiation in ICR Mice Skin

  • Lee, Min-Ja;Ryu, Bog-Mi;Kim, Mi-Hyang;Lee, Yu-Soon;Moon, Gap-Soon
    • Preventive Nutrition and Food Science
    • /
    • 제7권3호
    • /
    • pp.238-244
    • /
    • 2002
  • Protective effect of skin by antioxidative dietary buchu (Chinese chives, Allium tuberosum Router), was evaluated in ICR mice fed diets containing 2% or 5% buchu for 12 months. Lipid peroxidation and protein oxidation in skin, with or without ultraviolet B (UVB) irradiation, activities of antioxidative enzymes, total glutathione concentrations, and non-soluble collagen contents were measured. Dietary buchu decreased significantly in TBARS and protein carbonyl levels in skin compared to the control group, and were lower in those fed 5% than 2% buchu diet group. ICR mice exhibited an age-dependent decrease in antioxidative enzyme activities and total glutathione concentrations on the control diet, but in the groups fed buchu diet the enzyme activities and glu-tathione concentrations remained at youthful levels for most of the study. SOD, glutathione peroxidase, and catalase activities as well as total glutathione concentrations increased with time in the skins of the mice fed buchu diets. Lipid peroxidation and protein oxidation provoked by UVB irradiation on ICR mice skin homogenates were also significantly inhibited by dietary buchu. The buchu diets also decreased the formation of non-soluble collagen in mice skin, compared to the control group. These results suggest that antioxidative components and sulfur-compounds in buchu may confer protective effect against oxidative stress resulting from aging and exposure to ultraviolet irradiation.

NMR Studies on Turn Mimetic Analogs Derived from Melanocyte-stimulating Hormones

  • Cho, Min-Kyu;Kim, Sung-Soo;Lee, Myung-Ryul;Shin, Joon;Lee, Ji-Yong;Lim, Sung-Kil;Baik, Ja-Hyun;Yoon, Chang-Ju;Shin, In-Jae;Lee, Weon-Tae
    • BMB Reports
    • /
    • 제36권6호
    • /
    • pp.552-557
    • /
    • 2003
  • Oligomers with $\alpha$-aminooxy acids are reported to form very stable turn and helix structures, and they are supposed to be useful peptidomimetics for drug design. A recent report suggested that homochiral oxa-peptides form a strong eight-member-ring structure by a hydrogen bond between adjacent aminooxy-acid residues in a $CDCl_3$ solution. In order to design an $\alpha$-MSH analog with a stable turn conformation, we synthesized four tetramers and one pentamer, based on $\alpha$-MSH sequence, and determined the solution structures of the molecules by two-dimensional NMR spectroscopy and simulated annealing calculations. The solution conformations of the three peptidomimetic molecules (TLV, TDV, and TLL) in DMSO-$d_6$ contain a stable 7-membered-ring structure that is similar to a $\gamma$-turn in normal peptides. Newly-designed tetramer TDF and pentamer PDF have a ball-type rigid structure that is induced by strong hydrogen bonds between adjacent amide protons and carbonyl oxygens. In conclusion, the aminooxy acids, easily prepared from natural or unnatural amino acids, can be employed to prepare peptidomimetic analogues with well-defined turn structures for pharmaceutical interest.

Excitation energy transfer from carotenoids probed by femtosecond time-resolved fluorescence spectroscopy

  • Akimoto, Seiji;Yamazaki, Iwao;Mimuro, Mamoru
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.78-81
    • /
    • 2002
  • Fluorescence rise and decay curves of carotenoids were measured in solutions and in pigment protein complexes with a femtosecond time-resolved fluorescence spectroscopy. For linear carotenoids, the S$_2$ lifetimes showed the maximum value around n = 9-10. The conjugation of a keto-carbonyl group shortened the S$_2$lifetime and prolonged the S$_1$lifetime. The excitation relaxation dynamics within carotenoids and the excitation energy transfer kinetics from carotenoids to chlorophylls are discussed as a function of molecular structure of carotenoids.

  • PDF

느타리버섯 중의 Light-Induced Mitochondrial ATPase에 관한 연구 -유기물 효과- (Studies on Light-Induced Mitochondrial ATPase in Pleurotus ostreatus -Effects of Organic Compounds-)

  • 이호연;민태진
    • 한국균학회지
    • /
    • 제20권1호
    • /
    • pp.51-57
    • /
    • 1992
  • Mitochondria in Pleurotus ostreatus were isolated and purified by stepped sucrose density gradient centrifugation, to compare the effects of organic compound on the activities of mitochondrial ATPase in Basidiomycotina with those in mammalian cell. The effects of N, N'-dicycio-hexylcarbodiimide (DCCD), carbonyl cyanide m-chlorophenylhydrazone (CCCP), sodium azide and aurovertin known as compounds to be related to electron transfer system in mitochondria were studied. A activity of mitochondrial ATPase was inhibited by 64%, 57% and 53% in the presence of 0.25 mM DCCD, 0.02 mM sodium azide and 1.5 $({\mu}g/mg\;of\;protein)$ aurovertin B, respectively. It was stimulated by 22% in the presence of 0.15 ${\mu}M$ CCCP.

  • PDF

Inactivation of Copper, Zinc Superoxide Dismutase by the Lipid Peroxidation Products Malondialdehyde and 4-Hydroxynonenal

  • Koh, Young-Ho;Yoon, Seon-Joo;Park, Jeen-Woo
    • BMB Reports
    • /
    • 제32권5호
    • /
    • pp.440-444
    • /
    • 1999
  • Membrane lipid peroxidation processes yield reactive aldehydes that may react with copper,zinc superoxide dismutase (Cu,Zn SOD), one of the key antioxidant enzymes against oxidative stress. We investigated this possibility and found that exposing Cu,Zn SOD to malondialdehyde (MDA) or 4-hydroxynonenal (HNE) caused the loss of dismutase activity, cross-linking of peptides, and an increase in protein oxidation, reflected by the increased level of carbonyl groups. When Cu,Zn SOD that had been exposed to MDA or HNE was subsequently analyzed by amino acid analysis, histidine content was found to be significantly lost. Both MDA-and HNE-treated Cu,Zn SOD were resistant to proteolysis, which may imply that damaged proteins exist in vivo for a longer period of time than the native enzyme. The lipid peroxidation-mediated damage to Cu,Zn SOD may result in the perturbation of cellular antioxidant defense mechanisms, and subsequently lead to a pro-oxidant condition.

  • PDF

Oxidative Modification of Neurofilament-L Induced by Endogenous Neurotoxin, Salsolinol

  • Kang, Jung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권9호
    • /
    • pp.3421-3424
    • /
    • 2011
  • The endogenous neurotoxin, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol), has been considered a potential causative factor for the pathogenesis of Parkinson's disease (PD). In this study, we examined oxidative modification of neurofilament-L (NF-L) induced by salsolinol. When disassembled NF-L was incubated with salsolinol, the aggregation of protein was increased with the concentration of sasolinol. The formation of carbonyl compound was obtained in salsolinol-mediated NF-L aggregates. This process was protected by free radical scavengers, such as N-acetyl-L-cysteine and glutathione. These results suggest that the aggregation of NF-L is mediated by salsolinol via the generation of free radicals. We also investigated the effects of copper ion on salsolinol-mediated NF-L modification. In the presence of copper ions, salsolinol enhanced the modification of NF-L. We suggest that salsolinol might be related to abnormal aggregation of NF-L which may be involved in the pathogenesis of neurodegenerative diseases and related disorders.

Modification and inactivation of Cu,Zn-superoxide dismutase by the lipid peroxidation product, acrolein

  • Kang, Jung Hoon
    • BMB Reports
    • /
    • 제46권11호
    • /
    • pp.555-560
    • /
    • 2013
  • Acrolein is the most reactive aldehydic product of lipid peroxidation and is found to be elevated in the brain when oxidative stress is high. The effects of acrolein on the structure and function of human Cu,Zn-superoxide dismutase (SOD) were examined. When Cu,Zn-SOD was incubated with acrolein, the covalent crosslinking of the protein was increased, and the loss of enzymatic activity was increased in a dose-dependent manner. Reactive oxygen species (ROS) scavengers and copper chelators inhibited the acrolein-mediated Cu,Zn-SOD modification and the formation of carbonyl compound. The present study shows that ROS may play a critical role in acrolein-induced Cu,Zn-SOD modification and inactivation. When Cu,Zn-SOD that has been exposed to acrolein was subsequently analyzed by amino acid analysis, serine, histidine, arginine, threonine and lysine residues were particularly sensitive. It is suggested that the modification and inactivation of Cu,Zn-SOD by acrolein could be produced by more oxidative cell environments.

Antioxidative and Protective Activity of Polysaccharide Extract from Artemisia iwayomogi Kitamura Stems on UVB-Damaged Mouse Epidermis

  • Ahn, Byung-Yong;Jung, Mun-Yhung
    • Journal of Applied Biological Chemistry
    • /
    • 제54권3호
    • /
    • pp.184-189
    • /
    • 2011
  • Polysaccharide (PS) was fractionated from hot-water extract of Artemisia iwayomogi Kitamura stems. PS showed considerably higher hydroxyl radical scavenging activity than caffeic acid and glutathione. PS showed lower superoxide anion radical scavenging activity than hydroquinone and ascorbic acid. The scavenging activity of PS on the reactive oxygen species (ROS) induced by human neutrophils with zymosan was determined by the lucigenin-enhanced chemiluminescence assay. The scavenging effect of the PS on ROS as determined by the chemiluminescence assay was about 2-fold stronger than that of ascorbic acid at the same concentration. PS significantly decreased protein carbonyl and malonaldehyde contents in UVB irradiated skin homogenates, which was comparable to glutathione at the same concentration. This result suggested that PS derived from A. iwayomogi Kitamura stems may be a potent candidate as functional compound for the protection on UVB induced skin damage in cosmetics.

Oxidative Modification of Neurofilament-L by the Cytochrome c and Hydrogen Peroxide System

  • Kang, Jung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권1호
    • /
    • pp.77-80
    • /
    • 2007
  • As neurofilament proteins are major cytoskeletal components of neuron, abnormality of neurofilament is proposed in brain with neurodegenerative disorders such as Parkinson's disease (PD). Since oxidative stress might play a critical role in altering normal brain proteins, we investigated the oxidative modification of neurofilament-L (NF-L) induced by the reaction of cytochrome c with H2O2. When NF-L was incubated with cytochrome c and H2O2, the protein aggregation was increased in cytochrome c and H2O2 concentrationsdependent manner. Radical scavengers, azide, formate and N-acetyl cysteine, prevented the aggregation of NFL induced by the cytochrome c/H2O2 system. The formations of carbonyl group and dityrosine were obtained in cytochrome c/H2O2-mediated NF-L aggregates. Iron specific chelator, desferoxamine, prevented the cytochrome c/H2O2 system-mediated NF-L aggregation. These results suggest that the cytochrome c/H2O2 system may be related to abnormal aggregation of NF-L which may be involved in the pathogenesis of PD and related disorders.