• Title/Summary/Keyword: protease production

Search Result 585, Processing Time 0.028 seconds

Enhanced Tolerance of Chinese Cabbage Seedlings Mediated by Bacillus aryabhattai H26-2 and B. siamensis H30-3 against High Temperature Stress and Fungal Infections

  • Lee, Young Hee;Jang, Su Jeong;Han, Joon-Hee;Bae, Jin Su;Shin, Hyunsuk;Park, Hee Jin;Sang, Mee Kyung;Han, Song Hee;Kim, Kyoung Su;Han, Sang-Wook;Hong, Jeum Kyu
    • The Plant Pathology Journal
    • /
    • v.34 no.6
    • /
    • pp.555-566
    • /
    • 2018
  • Two rhizobacteria Bacillus aryabhattai H26-2 and B. siamensis H30-3 were evaluated whether they are involved in stress tolerance against drought and high temperature as well as fungal infections in Chinese cabbage plants. Chinese cabbage seedlings cv. Ryeokgwang (spring cultivar) has shown better growth compared to cv. Buram-3-ho (autumn cultivar) under high temperature conditions in a greenhouse, whilst there was no difference in drought stress tolerance of the two cultivars. In vitro growth of B. aryabhattai H26-2 and B. siamensis H30-3 were differentially regulated under PEG 6000-induced drought stress at different growing temperatures (30, 40 and $50^{\circ}C$). Pretreatment with B. aryabhattai H26-2 and B. siamensis H30-3 enhanced the tolerance of Chinese cabbage seedlings to high temperature, but not to drought stress. It turns out that only B. siamensis H30-3 showed in vitro antifungal activities and in planta crop protection against two fungal pathogens Alternaria brassicicola and Colletotrichum higginsianum causing black spots and anthracnose on Chinese cabbage plants cv. Ryeokgwang, respectively. B. siamensis H30-3 brings several genes involved in production of cyclic lipopeptides in its genome and secreted hydrolytic enzymes like chitinase, protease and cellulase. B. siamensis H30-3 was found to produce siderophore, a high affinity iron-chelating compound. Expressions of BrChi1 and BrGST1 genes were up-regulated in Chinese cabbage leaves by B. siamensis H30-3. These findings suggest that integration of B. aryabhattai H26-2 and B. siamensis H30-3 in Chinese cabbage production system may increase productivity through improved plant growth under high temperature and crop protection against fungal pathogens.

Production and characterization of lentivirus vector-based SARS-CoV-2 pseudoviruses with dual reporters: Evaluation of anti-SARS-CoV-2 viral effect of Korean Red Ginseng

  • Jeonghui Moon;Younghun Jung;Seokoh Moon;Jaehyeon Hwang;Soomin Kim;Mi Soo Kim;Jeong Hyeon Yoon;Kyeongwon Kim;Youngseo Park;Jae Youl Cho;Dae-Hyuk Kweon
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.123-132
    • /
    • 2023
  • Background: Pseudotyped virus systems that incorporate viral proteins have been widely employed for the rapid determination of the effectiveness and neutralizing activity of drug and vaccine candidates in biosafety level 2 facilities. We report an efficient method for producing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus with dual luciferase and fluorescent protein reporters. Moreover, using the established method, we also aimed to investigate whether Korean Red Ginseng (KRG), a valuable Korean herbal medicine, can attenuate infectivity of the pseudotyped virus. Methods: A pseudovirus of SARS-CoV-2 (SARS-2pv) was constructed and efficiently produced using lentivirus vector systems available in the public domain by the introduction of critical mutations in the cytoplasmic tail of the spike protein. KRG extract was dose-dependently treated to Calu-3 cells during SARS2-pv treatment to evaluate the protective activity against SARS-CoV-2. Results: The use of Calu-3 cells or the expression of angiotensin-converting enzyme 2 (ACE2) in HEK293T cells enabled SARS-2pv infection of host cells. Coexpression of transmembrane protease serine subtype 2 (TMPRSS2), which is the activator of spike protein, with ACE2 dramatically elevated luciferase activity, confirming the importance of the TMPRSS2-mediated pathway during SARS-CoV-2 entry. Our pseudovirus assay also revealed that KRG elicited resistance to SARS-CoV-2 infection in lung cells, suggesting its beneficial health effect. Conclusion: The method demonstrated the production of SARS-2pv for the analysis of vaccine or drug candidates. When KRG was assessed by the method, it protected host cells from coronavirus infection. Further studies will be followed for demonstrating this potential benefit.

Studies on the Mutation of Aspergillus niger (흑국균(黑麴菌)의 인공변이(人工變異)에 관(關)한 연구(硏究))

  • Park, Yoon-Joong;Sohn, Cheon-Bae
    • Korean Journal of Food Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.72-79
    • /
    • 1982
  • Several mutants were isolated from the parent strain of Aspergillus niger CF: the first mutant strain CF-11 was obtained by UV irradiation, and the second mutant strain CF-21 and CF-22 were from NTG (N-methyl-N'-nitroso-N-nitroso-guanidine) treatment on the CF-11. These mutants were characterized, and their enzyme and acid production on wheat bran Koji and wheat flour Koji were studied. Asp. niger CF-22 mutant appeared to be tan type which conidial heads were discolored. It's glucoamylase activity was inreased approximately two times and its ${\alpha}-amylase$ about 50 percent as compared with that of the parent strain of Asp. niger CF, when grown on wheat bran Koji under the optimal conditions. Asp. niger CF-21 mutant showed slower growth rate and poor sporulation than the wild type, although its conidial heads were not discolored. Approximately 4-fold increment in its acid production was observed as compared with the weld type. The activities of glucoamylase and ${\alpha}-amylase$ of the Asp. niger CF-22 and CF-21 mutants were higher than those of the wild type, but their protease activity was rather lower. The maximum production of glucoamylase by the Asp. niger CF-22 mutant was obtained after 2 to 3 days incubation on wheat bran at 30 to $35^{\circ}C;$ ${\alpha}-amylase$2 days incubation at 30 to $35^{\circ}C$. The maximal levels of acid production by the mutant CF-21 was appeared after 2 days incubation on wheat bran Koji, and after 3 days on wheat flour Koji at $30^{\circ}C$. Little differences in the levels of acid production were observed between on wheat bran and flour Koji.

  • PDF

Predicting In Sacco Rumen Degradation Kinetics of Raw and Dry Roasted Faba Beans (Vicia faba) and Lupin Seeds (Lupinus albus) by Laboratory Techniques

  • Yu, P.;Egan, A.R.;Leury, B.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.10
    • /
    • pp.1377-1387
    • /
    • 2000
  • Two laboratory techniques: (1) an in vitro method with two procedures for measuring protein degradabilities and (2) an in vitro method with three procedures for measuring protein solubility, were investigated to determine which laboratory techniques could most accurately predict the quantity of rumen protein degradation kinetics of legume seeds after dry roasting under various conditions, in terms of (1) rumen protein disappearance ($D_j$, where j=0, 2, 4, 8, 12, 24 and 48 h incubation), (2) rumen protein effective degradability (EDCP), (3) the parameters describing rumen degradation characteristics (the soluble fraction: S, the potentially degradable fraction: D, undegradable fraction: U, lag time: T0 and the degradation rate: Kd) and (4) rumen bypass protein (BCP), which were determined by the method accepted internationally at present, in sacco nylon bag technique using the standardized Dutch method. Feeds evaluated were the raw and dry roasted whole faba (Vicia faba) beans (WFB) and whole lupin (Lupinus albus) seeds (WLS), each was dry roasted under various conditions (at 110, 130 or $150^{\circ}C$ for 15, 30 or 45 min). In vitro protein degradability ($D_1$_Auf and $D_{24}$_Auf) were determined using the modified Aufr re method by enzymatic hydrolysis for 1 h and 24 h using a protease extracted from Streptomyces griseus in a borate-phosphate buffer. In vitro protein solubility ($bf_1$_S, $bf_2$_S, $bf_3$_S) was measured in a borate-phosphate buffer with three different procedures. Results from laboratory techniques (in vitro) were correlated and linearly regressed with in sacco results. Of the three procedures of in vitro protein solubility evaluated, none of them could predict in sacco results with good precision. The highest Pearson correlation coefficient ($R^2$) was less than 0.50. Of two procedures of in vitro protein degradability studied, the $D_1$_Auf values were closely correlated with in sacco parameters: Kd, EDCP and %BCP with high R' values: 0.82, 0.85 and 0.85, respectively, and closely correlated with in sacco $D_j$ at 2, 4, 8 and 12 h rumen incubation with high $R^2$ values: 0.83, 0.91, 0.93 and 0.83, respectively. The $D_{24}$_Auf values could not predict in sacco results. The highest $R^2$ value was less then 0.40. These results indicated that in vitro protein solubility measured in borate-phosphate failed to identify differences in the rate and extent of protein degradation of legume seeds after dry roasting under various conditions and thus should not be used to predict rumen degradation, particularly for heat processed feedstuffs. But in vitro protein degradability using the modified Aufr re method by enzymatic hydrolysis for 1 h or possibly an intermediate time (>1 h and <24 h) is a promising laboratory procedure to detect effectiveness of dry roasting legume seeds on rumen protein degradation characteristics and could be used as a simple laboratory method to predict the rate and extent of protein degradation in the rumen in sacco with high accuracy. The equations to predict EDCP, Kd and BCP of dry roasted legume seeds (WLS and WFB) under various conditions are as follow: For both: EDCP (%)=-1.37+1.06*$D_1$_Auf ($R^2=0.85$, p<0.01). For both: Kd (%/h)=-21.81+0.49*$D_1$_Auf ($R^2=0.82$, p<0.01). For both: %BCP=103.37-1.07*$D_1$_Auf ($R^2=0.85$, p<0.01).

Biological Control of Fusarium Stalk Rot of Maize Using Bacillus spp. (Bacillus spp.를 이용한 옥수수 밑둥썩음병의 생물학적 방제)

  • Han, Joon-Hee;Park, Gi-Chang;Kim, Joon-Oh;Kim, Kyoung Su
    • Research in Plant Disease
    • /
    • v.21 no.4
    • /
    • pp.280-289
    • /
    • 2015
  • Maize (Zea mays L.) is an economically important crop in worldwide. While the consumption of the maize is steadily increasing, the yield is decreasing due to continuous mono-cultivation and infection of soil-borne fungal pathogens such as Fusarium species. Recently, stalk rot disease in maize, caused by F. subglutinans and F. temperatum has been reported in Korea. In this study, we isolated bacterial isolates in rhizosphere soil of maize and subsequently tested for antagonistic activities against F. subglutinans and F. temperatum. A total of 1,357 bacterial strains were isolated from rhizosphere. Among them three bacterial isolates (GC02, GC07, GC08) were selected, based on antagonistic effects against Fusarium species. The isolates GC02 and GC07 were most efficient in inhibiting the mycelium growth of the pathogens. The three isolates GC02, GC07 and GC08 were identified as Bacillus methylotrophicus, B. amyloliquefaciens and B. thuringiensis using 16S rRNA sequence analysis, respectively. GC02 and GC07 bacterial suspensions were able to suppress over 80% conidial germination of the pathogens. GC02, GC07 and GC08 were capable of producing large quantities of protease enzymes, whereas the isolates GC07 and GC08 produced cellulase enzymes. The isolates GC02 and GC07 were more efficient in phosphate solubilization and siderophore production than GC08. Analysis of disease suppression revealed that GC07 was most effective in suppressing the disease development of stalk rot. It was also found that B. methylotrophicus GC02 and B. amyloliquefaciens GC07 have an ability to inhibit the growth of other plant pathogenic fungi. This study indicated B. methylotrophicus GC02 and B. amyloliquefaciens GC07 has potential for being used for the development of a biological control agent.

Effects of Passtein® Supplements on Protein Degradability, Ruminal Fermentation and Nutrient Digestibility (패스틴®첨가가 단백질 분해율과 반추위 발효 및 영양소 소화율에 미치는 영향)

  • Choi, Y.J.;Choi, N.J.;Park, S.H.;Song, J.Y.;Um, J.S.;Ko, J.Y.;Ha, J.K.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.549-560
    • /
    • 2002
  • This study, including two in vitro experiments and an in vivo experiment were conducted to evaluate effects of Passtein$^{(R)}$ on crude protein degradability, ruminal fermentation characteristics and nutrient digestibility. In in vitro experiment protein degradability was examined using borate-phosphate buffer and neutral detergent, and using protease from Stroptomyces griseus at 39$^{\circ}C$ for 0, 2, 4, 8, 12, and 48 h. In addition, an in vivo experiment was conducted in a switch back design and ruminal fermentation and nutrient digestibility were determined. Four ruminal-fistulated Holstein cows weighing 300kg in mean body weight randomly allotted to 2 treatments (control and Passtein$^{(R)}$ supplementation). Although there was no significant difference on protein fraction between treatments, it appears that Passtein$^{(R)}$ supplementation decreased buffer soluble protein fraction compared to control. Protein degradability was not affected by Passtein$^{(R)}$ from 0 h to 4 h, but decreased at 12 h and 48 h compared to control. Degradation of immediately degradable fraction was higher in Passtein$^{(R)}$ treatment, but degradation of fermentable fraction was lower in Passtein$^{(R)}$ treatment compared to control. The pH and $NH_3$-N concentration tended to increase in Passtein$^{(R)}$ treatment, but VFA production, microbial counts and enzyme activity tended to decrease in Passtein$^{(R)}$ treatment compared to control. In addition, nutrient digestibility in the total tract tended to increase in Passtein$^{(R)}$ treatment compared to control.

Production of Antimicrobial Compounds and Cloning of a dctA Gene Related Uptake of Organic Acids from a Biocontrol Bacterium Pseudomonas Chlororaphis O6 (생물적 방제균 Pseudomonas chlororaphis O6의 길항 물질 생산 및 유기산 흡수에 관련된 dctA 유전자의 클로닝)

  • Han, Song-Hee;Nam, Hyo-Song;Kang, Beom-Ryong;Kim, Kil-Yong;Koo, Bon-Sung;Cho, Baik-Ho;Kim, Young-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.3
    • /
    • pp.134-144
    • /
    • 2003
  • A rhizobacterium Pseudomonas cholororaphis O6 produced several secondary metabolites, such as phenazines, protease, and HCN that may be involved in inhibition of the growth of phytopathogenic fungi. In field study, P. chlororaphis O6 treatment on wheat seed suppressed root rot disease caused by Fusarium culmorum. The major organic acids of cucumber root exudates were fumaric acid, malic acid, benzoic acid, and succinic acid. Glucose and fructose were major monosaccharides in cucumber root exudates. The total amount of organic acids was ten times higher than that of the sugars. P. chlororaphis O6 grew well on cucumber root exudates. The dctA gene of P. chlororaphis O6 consisted of a 1,335 bp open reading frame with a deduced amino acid sequence of 444 residues, corresponding to a molecular size of about 47 kD and pI 8.2. The deduced dctA sequence has ten putative transmembrane domains, as expected of a membrane-embedded protein. Our results indicated that organic acids in cucumber root exudates may play an important role in providing nutrient source for root colonization of biological control bacteria, and the dctA gene of P. chlororaphis O6 may be an important bacterial trait that is involved in utilization of root exudates.

Production of highly enriched GABA through Lactobacillus plantarum fermentation of katsuobushi protein hydrolyzate made from Dendropanax morbiferus extract fermented by Bacillus subtilis (황칠나무 추출물의 고초균 발효물로 제조된 가쓰오부시 단백가수분해물의 Lactobacillus plantarum 발효를 통한 고농도 GABA 생산)

  • Yu-Jeong An;Nak-Ju Sung;Sam-Pin Lee
    • Food Science and Preservation
    • /
    • v.30 no.1
    • /
    • pp.146-154
    • /
    • 2023
  • To develop a multi-functional ingredient, the bioconversion of katsuobushi protein was optimized using Bacillus subtilis HA and Lactobacillus plantarum KS2020. The Dendropanax morbiferus extract (DME) culture with protease activity (102 unit/mL) was prepared by B. subtilis with 2% glucose and 1% skim milk through one day of alkaline fermentation. Katsuobushi protein was effectively hydrolyzed by the DME culture at 60℃ for 3 hours, resulting in a tyrosine content of 156.85 mg%. Subsequently, a second lactic acid fermentation was carried out with 10% monosodium glutamate (MSG) using L. plantarum KS2020 to produce higher levels of GABA. Following co-cultivation for three days, DME exhibited a pH of 8.3 (0% acidity). After seven days, the viable cell count of L. plantarum increased to 9.33 CFU/mL, but viable Bacillus cells were not detected. Taken together, a multi-functional ingredient with enriched GABA, peptides, probiotics, and umami flavor was developed through lactic acid fermentation using hydrolyzed katsuobushi protein. These results indicate that katsuobushi protein could be used as a byproduct to produce a palatable protein hydrolysate using alkaline-fermented DME culture as a proteolytic enzyme source.

Degradation of Poultry Feathers by Bacillus amyloliquefaciens Y10 With Plant Growth-promoting Activity and Biological Activity of Feather Hydrolyzates (식물 성장 촉진 활성을 가진 Bacillus amyloliquefaciens Y10에 의한 가금 우모의 분해 및 생산된 우모 분해산물의 생리활성)

  • Yedam Kim;Young Seok Lee;Youngsuk Kim;Jinmyeong Song;Yeongbeen Bak;Gyulim Park;O-Mi Lee;Hong-Joo Son
    • Journal of Life Science
    • /
    • v.34 no.5
    • /
    • pp.304-312
    • /
    • 2024
  • This study was conducted to characterize strain Y10, isolated from discarded chicken feathers. Strain Y10 was identified as Bacillus amyloliquefaciens through phenotypic and 16S rRNA gene analysis. B. amyloliquefaciens Y10 exhibited plant growth-promoting activities, including the production of fungal cell-degrading enzymes (cellulase, lipase, protease, and pectinase), siderophores, ammonia, and indoleacetic acid. Furthermore, strain Y10 was able to inhibit the mycelial growth of several phytopathogenic fungi. When 0.1% sucrose as a carbon source and 0.05% casein as a nitrogen source were added to the basal medium, adjusted to pH 10, and cultured at 35℃, the degradation rate of chicken feathers by strain Y10 was about two times higher than that of the basal medium, with the feathers almost completely degraded in four days. Strain Y10 also degraded various keratin substrates, including duck feathers, wool, and human nails. It was confirmed that the feather hydrolyzates prepared using strain Y10 exhibited antioxidant activities, such as 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity (EC50 = 0.38 mg/ml) and superoxide dismutase-like activity (EC50 = 183.7 mg/ml). These results suggest that B. amyloliquefaciens Y10 is a potential candidate for the development of bioinoculants and feed additives applicable to the agricultural and livestock industries, as well as the microbiological treatment of keratin waste.

Isolation and Characteristics of Bacteriocin-producing Bacteria from the Intestine of Duck for Probiotics (오리로부터 박테리오신을 생산하는 프로바이오틱 미생물의 분리 및 특성)

  • Shin, M.S.;Han, S.K.;Ji, A.R.;Ham, M.R.;Kim, K.S.;Lee, W.K.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.621-632
    • /
    • 2007
  • The aim of this study was to isolate and characterize bacteriocin-producing bacteria from the intestine of duck to use as probiotics for livestock. A total of 416 strains were isolated from the small intestine and cecum of ducks and 13 isolates were finally selected after determinging inhibitory activity against pathogenic indicators by spot-on-lawn method. The selected strains were identified as Lactobacillus salivarius JWS 58, Lactobacillus plantarum JWS 1354, Pediococcus pentosaceus JWS 939, 7 strains of enterococci, and 3 strains of Escherichia coli. Lact. salivarius JWS 58, Ent. faecium JWS 833, and Ped. pentosaceus JWS 939 showed a strong inhibitory activity against Listeria monocytogenes. E. coli JWS 108 inhibited the growth of E. coli and Staphylococcus aureus. Lact. salivarius JWS 58 strain survived almost 50% in pH 2.5 phosphate buffer for 2 hr. Ped. pentosaceus JWS 939 and Lact. plantarum JWS 1354 showed strong amylolytic activity. These results suggest that a combination of bacteriocins or multispecies probiotics of the selected strains has a strong potential of alternative to antibiotics in livestock production.