Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.07.2018.0130

Enhanced Tolerance of Chinese Cabbage Seedlings Mediated by Bacillus aryabhattai H26-2 and B. siamensis H30-3 against High Temperature Stress and Fungal Infections  

Lee, Young Hee (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
Jang, Su Jeong (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
Han, Joon-Hee (Division of Bioresource Sciences, Kangwon National University)
Bae, Jin Su (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
Shin, Hyunsuk (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
Park, Hee Jin (Institute of Glocal Disease Control, Konkuk University)
Sang, Mee Kyung (National Institute of Agricultural Science, Rural Development Administration)
Han, Song Hee (Hyunnong Co., Ltd)
Kim, Kyoung Su (Division of Bioresource Sciences, Kangwon National University)
Han, Sang-Wook (Department of Integrative Plant Science, Chung-Ang University)
Hong, Jeum Kyu (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
Publication Information
The Plant Pathology Journal / v.34, no.6, 2018 , pp. 555-566 More about this Journal
Abstract
Two rhizobacteria Bacillus aryabhattai H26-2 and B. siamensis H30-3 were evaluated whether they are involved in stress tolerance against drought and high temperature as well as fungal infections in Chinese cabbage plants. Chinese cabbage seedlings cv. Ryeokgwang (spring cultivar) has shown better growth compared to cv. Buram-3-ho (autumn cultivar) under high temperature conditions in a greenhouse, whilst there was no difference in drought stress tolerance of the two cultivars. In vitro growth of B. aryabhattai H26-2 and B. siamensis H30-3 were differentially regulated under PEG 6000-induced drought stress at different growing temperatures (30, 40 and $50^{\circ}C$). Pretreatment with B. aryabhattai H26-2 and B. siamensis H30-3 enhanced the tolerance of Chinese cabbage seedlings to high temperature, but not to drought stress. It turns out that only B. siamensis H30-3 showed in vitro antifungal activities and in planta crop protection against two fungal pathogens Alternaria brassicicola and Colletotrichum higginsianum causing black spots and anthracnose on Chinese cabbage plants cv. Ryeokgwang, respectively. B. siamensis H30-3 brings several genes involved in production of cyclic lipopeptides in its genome and secreted hydrolytic enzymes like chitinase, protease and cellulase. B. siamensis H30-3 was found to produce siderophore, a high affinity iron-chelating compound. Expressions of BrChi1 and BrGST1 genes were up-regulated in Chinese cabbage leaves by B. siamensis H30-3. These findings suggest that integration of B. aryabhattai H26-2 and B. siamensis H30-3 in Chinese cabbage production system may increase productivity through improved plant growth under high temperature and crop protection against fungal pathogens.
Keywords
antifungal; Bacillus; biocontrol; Chinese cabbage; high temperature stress;
Citations & Related Records
Times Cited By KSCI : 13  (Citation Analysis)
연도 인용수 순위
1 Abd_Allah, E. F., Alqarawi, A. A., Hashem, A., Radhakrishnan, R., Al-Huqail, A. A., Al-Otibi, F. O. N., Malik, J. A., Alharbi, R. I. and Egamberdieva, D. 2017. Endophytic bacterium Bacillus subtilis (BERA 71) improves salt tolerance in chickpea plants by regulating the plant defense mechanisms. J. Plant Interact. 13:37-44.
2 Ahmad, Z., Wu, J., Chen, L. and Dong, W. 2017. Isolated Bacillus subtilis strain 330-2 and its antagonistic genes identified by the removing PCR. Sci. Rep. 7:1777.   DOI
3 Alamri, S. A. 2015. Enhancing the efficiency of the bioagent Bacillus subtilis JF419701 against soil-borne phytopathogens by increasing the productivity of fungal cell wall degrading enzymes. Arch. Phytopathol. Plant Protect. 48:159-170.   DOI
4 Ali, S. Z., Sandhya, V., Grover, M., Kishore, N., Venkateswar Rao, L. and Venkateswarlu, B. 2009. Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol. Fertil. Soils 46:45-55.   DOI
5 Ali, S. Z., Sandhya, V., Grover, M., Venkateswar Rao, L. and Venkateswarlu, B. 2011. Effect of inoculation with a thermotolerant plant growth promoting Pseudomonas putida strain AKMP7 on growth of wheat (Triticum spp.) under heat stress. J. Plant Interact. 6:239-246.   DOI
6 Angadi, S. V., Cutforth, H. W., Miller, P. R., McConkey, B. G., Entz, M. H., Brandt, S. A. and Volkmar, K. M. 2000. Response of three Brassica species to high temperature stress during reproductive growth. Can. J. Plant Sci. 80:693-701.   DOI
7 Asari, S., Ongena, M., Debois, D., De Pauw, E., Chen, K., Bejai, S. and Meijer, J. 2017. Insights into the molecular basis of biocontrol of Brassica pathogens by Bacillus amyloliquefaciens UCMB5113 lipopeptides. Ann. Bot. 120:551-562.   DOI
8 Dixon, D. P., Lapthorn, A. and Edwards, R. 2002. Plant glutathione transferases. Genome Biol. 3:3004.1-3004.10.
9 Dong, X., Yi, H., Lee, J., Nou, I. S., Han, C. T. and Hur, Y. 2015. Global gene-expression analysis to identify differentially expressed genes critical for the heat stress response in Brassica rapa. PLoS One 10:e0130451.   DOI
10 Duijff, B. J., Meijer, J. W., Bakker, P. A. H. M. and Schippers, B. 1993. Siderophore-mediated competition for iron and induced resistance in the suppression of fusarium wilt of carnation by fluorescent Pseudomonas spp. Neth. J. Plant Pathol. 99:277-289.   DOI
11 Elad, Y. and Pertot, I. 2014. Climate change impacts on plant pathogens and plant diseases. J. Crop Improv. 28:99-139.   DOI
12 Fahad, S., Bajwa, A. A., Nazir, U., Anjum. S. A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., Ihsan, M. Z., Alharby, H., Wu, C., Wang, D. and Huang, J. 2017. Crop production under drought and heat stress: plant responses and management options. Front. Plant Sci. 8:1147.   DOI
13 Fincheira, P. and Quiroz, A. 2018. Microbial volatiles as plant growth inducers. Microbiol. Res. 208:63-75.   DOI
14 Gregory, P. J., Johnson, S. N., Newton, A. C. and Ingram, J. S. 2009. Integrating pests and pathogens into the climate change/food security debate. J. Exp. Bot. 60:2827-2838.   DOI
15 Asari, S., Matzen, S., Petersen, M. A., Bejai, S. and Meijer, J. 2016. Multiple effects of Bacillus amyloliquefaciens volatile compounds: plant growth promotion and growth inhibition of phytopathogens. FEMS Microbiol. Ecol. 92:fiw070.   DOI
16 Kakar, K. U., Ren, X.-L., Nawaz, Z., Cui, Z.-Q., Li, B., Xie, G.-L., Hassan, M. A., Ali, E. and Sun, G.-C. 2016. A consortium of rhizobacterial strains and biochemical growth elicitors improve cold and drought stress tolerance in rice (Oryza sativa L.). Plant Biol. 18:471-483.   DOI
17 Han, J.-H., Shim, H., Shin, J.-H. and Kim, K. S. 2015. Antagonistic activities of Bacillus spp. strains isolated from tidal flat sediment towards anthracnose pathogens Colletotrichum acutatum and C. gloeosporioides in South Korea. Plant Pathol. J. 31:165-175.   DOI
18 Han, J.-H., Park, G.-C. and Kim, K. S. 2017. Antagonistic evaluation of Chromobacterium sp. JH7 for biological control of ginseng root rot caused by Cylindrocarpon destructans. Mycobiololgy 45:370-378.   DOI
19 Jeong, H., Jeong, D.-E., Kim, S. H., Song, G. C., Park, S.-Y., Ryu, C.-M., Park, S.-H. and Choi, S.-K. 2012. Draft genome sequence of the plant growth-promoting bacterium Bacillus siamensis KCTC $13613^T$. J. Bacteriol. 194:4148-4149.   DOI
20 Kang, S.-M., Radhakrishnan, R. and Lee, I. J. 2015. Bacillus amyloliquefaciens subsp. plantarum GR53, a potent biocontrol agent resists Rhizoctonia disease on Chinese cabbage through hormonal and antioxidants regulation. World J. Microbiol. Biotechnol. 31:1517-1527.   DOI
21 Kask, K., Kannaste, A., Talts, E., Copolovici, L. and Niinemets, U. 2016. How specialized volatiles respond to chronic and shortterm physiological and shock heat stress in Brassica nigra. Plant Cell Environ. 39:2027-2042.   DOI
22 Kavamura, V. N., Santos, S. N., da Silva, J. L., Parma, M. M., Avila, L. A., Visconti, A., Zucchi, T. D., Taketani, R. G., Andreote, F. D. and de Melo, I. S. 2013. Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiol. Res. 168:183-191.   DOI
23 Kim, Y.-W., Jung, H.-J., Park, J.-I., Hur, Y. and Nou, I.-S. 2015c. Response of NBS encoding resistance genes linked to both heat and fungal stress in Brassica oleracea. Plant Physiol. Biochem. 86:130-136.   DOI
24 Kim, J.-S., Lee, J., Lee, C.-H., Woo, S. W., Kang, H., Seo, S.-G. and Kim, S.-H. 2015a. Activation of pathogenesis-related genes by the rhizobacterium, Bacillus sp. JS, which induces systemic resistance in tobacco plants. Plant Pathol. J. 31:195-201.   DOI
25 Kim, S. Y., Sang, M. K., Weon, H.-Y., Jeon, Y.-A., Ryoo, J. H. and Song, J. 2016. Characterization of multifunctional Bacillus sp. GH1-13. Korean J. Pestic. Sci. 20:189-196 (in Korean).   DOI
26 Kim, Y. J., Lee, Y. H., Lee, H.-J., Jung, H. and Hong, J. K. 2015b. $H_2O_2$ production and gene expression of antioxidant enzymes in kimchi cabbage (Brassica rapa var. glabra Regel) seedlings regulated by plant development and nitrosative stresstriggered cell death. Plant Biotechnol. Rep. 9:67-78.   DOI
27 Lee, S. G., Lee, H. J., Kim, S. K., Choi, C. S., Park, S. T., Jang, Y. A. and Do, K. R. 2015. Effects of vernalization, temperature, and soil drying periods on the growth and yield of Chinese cabbage. Korean J. Hortic. Sci. Technol. 33:820-828.   DOI
28 Lee, S. G., Lee, H. J., Kim, S. K., Choi, C. S. and Park, S. T. 2016. Influence of waterlogging period on the growth, physiological responses, and yield of kimchi cabbage. J. Environ. Sci. Int. 25:535-542 (in Korean).   DOI
29 Lee, Y. H. and Hong, J. K. 2012. Host and non-host resistance of kimchi cabbage against different Xanthomonas campestris pathovars. Plant Pathol. J. 28:322-329.   DOI
30 Kim, B.-R., Park, M.-S., Han, K.-S., Hahm, S.-S., Park, I.-H. and Song, J.-K. 2018. Biological control using Bacillus toyonensis strain CAB12243-2 against soft rot on Chinese cabbage. Korean J. Organic Agric. 26:129-140.   DOI
31 Sulochana, M. B., Jayachandra, S. Y., Kumar, S. K. A. and Dayanand, A. 2014 Antifungal attributes of siderophore produced by the Pseudomonas aeruginosa JAS-25. J. Basic Microbiol. 54:418-424.   DOI
32 Shafi, J., Tian, H. and Ji, M. 2017. Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol. Biotechnol. Equip. 31:446-459.   DOI
33 Sherriff, C. and Lucas, J. A. 1990. The host range of isolates of downy mildew, Peronospora parasitica, from Brassica crop species. Plant Pathol. 39:77-91.   DOI
34 Slusarenko, A. J. and Schlaich, N. L. 2003. Downy mildew of Arabidopsis thaliana caused by Hyaloperonospora parasitica (formerly Peronospora parasitica). Mol. Plant Pathol. 4:159-170.   DOI
35 Sun, C., Johnson, J. M., Cai, D., Sherameti, I., Oelmuller, R. and Lou, B. 2010. Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J. Plant Physiol. 167:1009-1017.   DOI
36 Tahir, H. A. S., Gu, Q., Wu, H., Niu, Y., Huo, R. and Gao, X. 2017. Bacillus volatiles adversely affect physiology and ultrastructure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt. Sci. Rep. 7:40481.   DOI
37 Templer, S. E., Ammon, A., Pscheidt, D., Ciobotea, O., Schuy, C., McCollum, C., Sonnewald, U., Hanemann, A., Forster, J., Ordon, F., von Korff, M. and Voll, L. M. 2017. Metabolite profiling of barley flag leaves under drought and combined heat and drought stress reveals metabolite QTLs for metabolites associated with antioxidant defense. J. Exp. Bot. 68:1697-1713.   DOI
38 Lim, J.-H. and Kim, S.-D. 2013. Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol. J. 29:201-208.   DOI
39 Timmusk, S., Abd El-Daim, I. A., Copolovici, L., Tanilas, T., Kannaste, A., Behers, L., Nevo, E., Seisenbaeva, G., Stenstrom, E. and Niinemets, U. 2014. Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: Enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9:e96086.   DOI
40 Lee, Y. H. and Hong, J. K. 2014. Differential defence responses of susceptible and resistant kimchi cabbage cultivars to anthracnose, black spot and black rot diseases. Plant Pathol. 64:406-415.
41 Maksimov, I. V., Abizgil'dina, R. R. and Pusenkova, L. I. 2011. Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (Review). Appl. Biochem. Microbiol. 47:333-345.   DOI
42 Nautiyal, C. S., Srivastava, S., Chauhan, P. S., Seem, K., Mishra, A. and Sopory, S. K. 2013. Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profiles of leaf and rhizosphere community in rice during salt stress. Plant Physiol. Biochem. 66:1-9.   DOI
43 Neeraja, C., Anil, K., Purushotham, P., Suma, K., Sarma, P. V. S. R. N., Moerschbacher, B. M. and Podile, A. R. 2010. Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants. Crit. Rev. Biotechnol. 30:231-241.   DOI
44 Ngumbi, E. and Kloepper, J. 2016. Bacterial-mediated drought tolerance: Current and future prospects. Appl. Soil Ecol. 105:109-125.   DOI
45 Oh, S., Moon, K. H., Son, I.-C., Song, E. Y., Moon, Y. E. and Koh, S. C. 2014. Growth, photosynthesis and chlorophyll fluorescence of Chinese cabbage in response to high temperature. Korean J. Hort. Sci. Technol. 32:318-329. (in Korean)   DOI
46 Yan, M. 2015. Seed priming stimulate germination and early seedling growth of Chinese cabbage under drought stress. S. Afr. J. Bot. 99:88-92.   DOI
47 Wang, C.-J., Yang, W., Wang, C., Gu, C., Niu, D.-D., Liu, H.-X., Wang, Y.-P. and Guo, J.-H. 2012. Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS One 7:e52565.   DOI
48 Wang, N., Liu, M., Guo, L., Yang, X. and Qiu, D. 2016. A novel protein elicitor (PeBA1) from Bacillus amyloliquefaciens NC6 induces systemic resistance in tobacco. Int. J. Biol. Sci. 12:757-767.   DOI
49 Wilson, R. A., Sangha, M. K., Banga, S. S., Atwal, A. K. and Gupta, S. 2014. Heat stress tolerance in relation to oxidative stress and antioxidants in Brassica juncea. J. Environ. Biol. 35:383-387.
50 Yang, Y.-W., Tsai, C.-C., Liou, T.-D. and Chen, K.-S. 2001. Two heat-tolerant F1 hybrids of Chinese cabbage. HortScience 36:1144-1145.   DOI
51 Yang, J., Kloepper, J. W. and Ryu, C.-M. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 14:1-4.   DOI
52 Park, Y.-G., Mun, B.-G., Kang, S.-M., Hussain, A., Shahzad, R., Seo, C.-W., Kim, A.-Y., Lee, S.-U., Oh, K. Y., Lee, D. Y., Lee, I.-J. and Yun, B. W. 2017. Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS One 12:e0173203.   DOI
53 Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trend Microbiol. 16:115-125.   DOI
54 Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J.-L. and Thonart, P. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9:1084-1090.   DOI
55 Yoo, S.-J. and Sang, M. K. 2017. Induced systemic tolerance to multiple stresses including biotic and abiotic factors by rhizobacteria. Res. Plant Dis. 23:99-113 (in Korean).   DOI
56 Zandalinas, S. I., Rivero, R. M., Martinez, V., Gomez-Cadenas, A. and Arbona, V. 2016. Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. BMC Plant Biol. 16:105.   DOI
57 Zhao, F., Zhang, D., Zhao, Y., Wang, W., Yang, H., Tai, F., Li, C. and Hu, X. 2016. The difference of physiological and proteomic changes in maize leaves adaptation to drought, heat and combined both stresses. Front. Plant Sci. 7:1471.
58 Park, K., Ahn, I.-P. and Kim, C.-H. 2001. Systemic resistance and expression of the pathogenesis-related genes mediated by the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens EXTN-1 against anthracnose disease in cucumber. Mycobiology 29:48-53.   DOI
59 Park, T. -H., Choi, B. -S., Choi, A. -Y., Choi, I. -Y., Heu, S. and Park, B. -S. 2012. Genome sequence of Pectobacterium carotovorum subsp. carotovorum strain PCC21, a pathogen causing soft rot in Chinese cabbage. J. Bacteriol. 194:6345-6346.   DOI
60 Rakotoniriana, E. F., Rafamantanana, M., Randriamampionona, D., Rabemanantsoa, C., Urveg-Ratsimamanga, S., El Jaziri, M., Munaut, F., Corbisier, A.-M., Quetin-Leclercq, J. and Declerck, S. 2013. Study in vitro of the impact of endophytic bacteria isolated from Centella asiatica on the disease incidence caused by the hemibiotrophic fungus Colletotrichum higginsianum. Antonie Van Leeuwenhoek 103:121-133.   DOI
61 Sang, M. K., Dutta, S. and Park, K. 2015. Influence of commercial antibiotics on biocontrol of soft rot and plant growth promotion in Chinese cabbages by Bacillus vallismortis EXTN-1 and BS07M. Res. Plant Dis. 21:255-260.   DOI
62 Zhou, R., Yu, X., Ottosen, C.-O., Rosenqvist, E., Zhao, L., Wang, Y., Yu, W., Zhao, T. and Wu, Z. 2017. Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biol. 17:24.   DOI
63 Reyes-Ramirez, A., Escudero-Abarca, B. I., Aguilar-Uscanga, G., Hayward-Jones, P. M. and Barboza-Corona, J. E. 2004. Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds. J. Food Sci. 69:M131-M134.   DOI
64 Sammis, T. W., Kratky, B. A. and Wu, I. P. 1988. Effects of limited irrigation on lettuce and Chinese cabbage yields. Irrigation Sci. 9:187-198.   DOI