• Title/Summary/Keyword: propulsor

Search Result 39, Processing Time 0.023 seconds

Experimental evaluation of pumpjet propulsor for an axisymmetric body in wind tunnel

  • Suryanarayana, Ch.;Satyanarayana, B.;Ramji, K.;Saiju, A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.1
    • /
    • pp.24-33
    • /
    • 2010
  • Design of a Pump Jet Propulsor (PJP) was undertaken for an underwater body with axisymmetric configuration using axial/low compressor design techniques supported by Computational Fluid Dynamics (CFD) analysis for performance prediction. Experimental evaluation of the PJP was earned out through experiments in a Wind Tunnel Facility (WTF) using momentum defect principle for propulsive performance prior to proceeding with extensive experimental evaluation in towing tank and cavitation tunnel. Experiments were particularly conducted with respect to Self Propulsion Point (SPP), residual torque and thrust characteristics over a range of vehicle advance ratio in order to ascertain whether sufficient thrust is developed at the design condition with least possible imbalance torque left out due to residual swirl in the slip stream. Pumpjet and body models were developed for the propulsion tests using Aluminum alloy forged material. Tests were conducted from 0 m/s to 30 m/s at four rotational speeds of the PJP. SPP was determined confirming the thrust development capability of PJP. Estimation of residual torque was carried out at SPP corresponding to speeds of 15, 20 and 25 m/s to examine the effectiveness of the stator. Estimation of thrust and residual torque was also carried out at wind speeds 0 and 6 m/s for PJP RPMs corresponding to self propulsion tests to study the propulsion characteristics during the launch of the vehicle m water where advance ratios are close to Zero. These results are essential to assess the thrust performance at very low advance ratios to accelerate the body and to control the body during initial stages. This technique has turned out to be very useful and economical method for quick assessment of overall performance of the propulsor and generation of exhaustive fluid dynamic data to validate CFD techniques employed.

Development of a Ventilating Waterjet Propulsor for Super-High Speed Ships (초고속선을 위한 공기유입 물제트 추진기 개발)

  • J.T. Lee;I.S. Moon;Y.H. Park;K.Y. Kim;K.S. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.3
    • /
    • pp.41-49
    • /
    • 1999
  • A feasibility study is performed for practical application of a Ventilating Water-Jet(VWJ) propulsor which attracts new attention as a candidate propulsor for super-high speed vessels. Super-cavitating foil sections are adopted for the rotor blades since the rotor is operating at ventilating condition. Wedge type and cavitator type foil sections are used for the design of rotor blades. Other geometric characteristics of rotors are selected from the Kaplan type ducted propeller rotors. The test section of KRISO cavitation tunnel is modified to perform open-water tests of the VWJ propulsors. The tests are performed both at fully-submerged and free-jet conditions. Ventilation occurred at the free-jet condition by sucking the air in the downstream side of the rotor, which easily develops as super-cavitation when the rotor operates at lower advance coefficients. Spoilers are attached at the trailing end of the pressure side of the blade section, in order to increase the lift force.

  • PDF

Prediction of Performance of Waterjet Propulsors by Surface Panel Method (패널법에 의한 물 분사 추진장치의 성능해석)

  • Moon, II-Sung;Lee, Chang-Sup;Song, In-Haeng;Kim, Ki-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.4
    • /
    • pp.31-41
    • /
    • 1997
  • This paper describes a potential-based panel method formulated for the prediction of the steady performance of a waterjet propulsor. The method employs normal dipoles and sources distributed on the solid surfaces such as the impeller/stator blades, hub and duct, and normal dipoles in the shed wakes trailing the impeller and stator to represent the potential flow around the waterjet propulsor. To define a closed boundary surface, the inlet and outlet open boundary surfaces are introduced where the sources and dipoles are distributed. The kinematic boundary condition on the solid boundary surface is satisfied by requiring that the normal component of the total velocity should vanish. On the inlet surface, the total inflow flux into the duct is specified, and on the outlet surface the conservation of mass principle is applied to evaluate the source strength. The solid surfaces are discretized into a set of quadrilateral panel elements and the strengths of sources and dipoles are assumed constant at each panel. Applying this approximation to the boundary conditions leads to a set of simultaneous equations. Systematic numerical tests show that the present numerical method is fast and stable. In order to validate the present method, sample computations are carried out first for the case of a conventional axial flow fan which has a similar geometry as the waterjet propulsor, and then for the case of a waterjet propulsor on which experiments are carried out at KRISO(Korea Research Institute of Ships and Ocean Engineering).

  • PDF

Experimental and Numerical Studies of the Flowfield around an Axisymmetric Body (축대칭 물체 주위유동의 실험적·수치적 연구)

  • Ahn, Jong-Woo;Song, In-Haeng;Park, Tae-Sun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.3
    • /
    • pp.9-18
    • /
    • 1997
  • Experimental and numerical studies are carried out to investigate flow characteristics around an axisymmetric body with and without a compound propulsor. The effects of a compound propulsor are investigated as measuring the surface pressure distribution and the velocity profiles using LDV system in the cavitation tunnel of KRISO. The incompressible Reynolds-Averaged Navier-Stokes(RANS) equations are also solved using the finite volume method. The standard k-${\varepsilon}$ turbulence model is adopted for turbulence closure. In order to calculate propeller-hull interaction, the induced velocity calculated by lifting surface theory is considered as the boundary condition at the propeller plane. The experimental data obtained in this study can provide a useful database for development and validation of CFD code.

  • PDF

Calculation of the Effective Wake in a Radially Sheared Inflow (유효반류 계산에 관한 연구)

  • E.D.,Park;S.S.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.1
    • /
    • pp.73-83
    • /
    • 1990
  • A theorectical method is presented for the calculation of the effective wake in an axisymmetric sheared inflow. The effective wake is essential in the design of optimal propulsor and in the reduction of propulsor induced vibration and noise. The nominal wakes are mathematically modelled and the effective wakes are calculated using the computer program developed on the basis of the linear momentum theory. The results show that shear effects arc dominant near the hub and the effective wakes reveal some differences near the hub for the moderately and heavily loaded propulsors but they arc well coincided with the other experimental or theorectical results for the lightly loaded propulsors. To improve the results it may be necessary to consider nonlinear terms neglected in this study and body boundary condition on hub.

  • PDF

A study on development of a dual driven ship berthing/deberthing system using magnetic gear (마그네틱 기어를 이용한 듀얼 구동식 선박 접이안 시스템 개발에 관한 연구)

  • Kang, Min-Su;Kim, Byong-Kuk;Kim, Hyen-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.98-99
    • /
    • 2016
  • The aim of study is to develop a dual driven ship berthing/deberthing system with $360^{\circ}$ steerability. A large ship used bow thruster, side thruster and pod propulsor etc. when approaching to a pier. But as marine leisure boats become large-scaled, the number of accidents is recently increasing what caused a ship to crash into a ship and a ship to crash into mooring facilities during berthing/deberthing on a marina. To solve the problem, the control responsiveness of a joystick connected with two motors and a propeller was checked and torque was increased by the electromagnetic design of magnetic gear. A sea trial test was carried out to investigate a performance of the developed system in the real sea.

  • PDF

A Numerical Simulation for the Propulsion of Axisymmetric Micro-Hydro-Machine by Contractive and Dilative Motion (수축팽창 운동에 의한 축대칭 마이크로-하이드로-머신의 추진을 위한 수치 시뮬레이션)

  • Kim Moon-Chan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.30-37
    • /
    • 2001
  • A Numerical simulation for the propulsion of axisymmetric body by contractive and dilative motion is carried out. The present analysis shows that a propulsive force can be obtained in highly viscous fluid by a contractive and dilative motion of axisymmetric body. An axisymmetric analysis code is developed with unstructured grid system for the simulation of complicated motion and geometry. The developed code is validated by comparing with the results of stokes approximation with the problem of uniform flow past a sphere in low Reynolds number($R_n=1$). The validated code is applied to the simulation of contractive and dilative motion of body. The simulation is extended to the analysis of waving surface with projecting part for finding out the difference of hydrodynamic performance according to the variation of waving surface configuration. The present study will be the basic research for the development of the propulsor of an axisymmetric micro-hydro-machine.

  • PDF

A Numerical Simulation for Contractive and Dilative Periodic Motion on Axisymmetric Body

  • Kim, Moon-Chan
    • Journal of Ship and Ocean Technology
    • /
    • v.3 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • Numerical simulation for the axisymmetric body with contractive and dilative periodic motion is carried out. The present analysis shows that a propulsive force can be obtained in highly viscous fluid by the contractive and dilative motion of axisymmetric body. An axisymmetric code is developed with unstructured grid system for the simulation of complicated motion and geometry. It is validated by comparing with the results of Stokes approximation with the problem of uniform flow past a sphere in low Reynolds number($R_n$ = 1). The validated code is applied to the simulation of contractive and dilative periodic motion of body whose results are quantitatively compared with the two dimensional case. The simulation is extended to the analysis of waving surface with projecting part for finding out the difference of hydrodynamics performance according to variation of waving surface configuration. The present study will be the basic research for the development of the propulsor of an axisymmetric micro-hydro-machine.

  • PDF

Numerical investigation on cavitation and non-cavitation flow noise on pumpjet propulsion (펌프젯 추진기의 공동 비공동 유동소음에 대한 수치적 연구)

  • Garam Ku;Cheolung Cheong;Hanshin Seol;Hongseok Jeong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.3
    • /
    • pp.250-261
    • /
    • 2023
  • In this study, the noise contributions by the duct, stator and rotor, which are the propulsor components, are evaluated to identify the flow noise source in cavitation and non-cavitation conditions on pumpjet propulsion and the noise levels in both conditions are compared. The unsteady incompressible Reynolds averaged Navier-Stokes (RANS) equation based on the homogeneous mixture assumption is applied on the suboff submarine hull and pumpjet propeller in the cavitation tunnel, and the Volume of Fluid (VOF) method and Schnerr-Sauer cavitation model are used to describe the two-phase flow. Based on the flow simulation results, the acoustic analogy formulated by Ffowcs Williams and Hawkings (FW-H) equation is applied to predict the underwater radiated noise. The noise contributions are evaluated by using the three types of impermeable integral surface on the duct, stator and rotor, and the two types of permeable integral surface surrounding the propulsor. As a result of noise prediction, the contribution by the stator is insignificant, but it affects the generation of flow noise source due to flow separation in the duct and rotor, and the noise is predominantly radiated into the upward and right where the flow separations are. Also, the noise is radiated into the thrust direction due to pressure fluctuation between suction and pressure sides on the rotor blades, and the it can be seen that the cavitation effect into the noise can be considered through the permeable integral surface.

Estimation of Resistance of Smart Harbor Crane Ship (Smart Harbor Crane Ship의 저항 추정)

  • Shin, Hyun-Kyoung;Kim, Min-Su;Jeong, Won-Jin;Ha, Yong-Hwak
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • Recently, with increasing container ships' volume continuously, the conceptual design "Smart Harbor" of newly logistics processing system has been suggested. It is necessary to estimate resistance and horsepower for the selection of an appropriate propulsor at the initial design stage of Smart Harbor. In this study, CFD and the circulating water channel of the University of Ulsan are employed for estimating the resistance of the Smart Harbor Crane Ship with 1/100 scaled model. Two turbulent models are used. One is realizable k-${\varepsilon}$and the other is Reynolds stress turbulence model. In addition, the effects of the change in y+ and the number of meshes are considered during analysing.