• Title/Summary/Keyword: propeller design

Search Result 394, Processing Time 0.025 seconds

The Static Structural Design and Test of High Speed Propeller Blade (고속 프로펠러 블레이드 정적 구조 설계 및 시험)

  • Park, Hyun-Bum;Choi, Won
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.4
    • /
    • pp.11-18
    • /
    • 2014
  • The recent high speed propeller with blade sweep is required to have high strength to get the thrust to fly at high speed. The high stiffness and strength carbon/epoxy composite material is used for the major structure and skin-spar-foam sandwich structural type is adopted for advantage in terms of the blade weight. As a design procedure for the present study, the structural design load is estimated through investigation on aerodynamic load and then flanges of spars from major bending loads and the skin from shear loads are sized using the netting rule and Rule of Mixture. In order to investigate the structural safety and stability, stress analysis is performed by finite element analysis code MSC. NASTRAN. It is found that current methodology of composite structure design is a valid method through the static structural test of prototype blade.

Optimization of energy saving device combined with a propeller using real-coded genetic algorithm

  • Ryu, Tomohiro;Kanemaru, Takashi;Kataoka, Shiro;Arihama, Kiyoshi;Yoshitake, Akira;Arakawa, Daijiro;Ando, Jun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.406-417
    • /
    • 2014
  • This paper presents a numerical optimization method to improve the performance of the propeller with Turbo-Ring using real-coded genetic algorithm. In the presented method, Unimodal Normal Distribution Crossover (UNDX) and Minimal Generation Gap (MGG) model are used as crossover operator and generation-alternation model, respectively. Propeller characteristics are evaluated by a simple surface panel method "SQCM" in the optimization process. Blade sections of the original Turbo-Ring and propeller are replaced by the NACA66 a = 0.8 section. However, original chord, skew, rake and maximum blade thickness distributions in the radial direction are unchanged. Pitch and maximum camber distributions in the radial direction are selected as the design variables. Optimization is conducted to maximize the efficiency of the propeller with Turbo-Ring. The experimental result shows that the efficiency of the optimized propeller with Turbo-Ring is higher than that of the original propeller with Turbo-Ring.

The Study for Stress Calculation of Slip Damage between Propeller Boss and Shaft on the Large Vessel (대형선 프로펠러보스 슬립 손상부에 대한 응력 계산에 관한 연구)

  • Baik, Shin-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.3
    • /
    • pp.291-294
    • /
    • 2011
  • The accident of Slip damage which arose between propeller boss and shaft will be a great problem of safety and economical due to the loss of propulsion power. In this study, the cause of slip damage on the large vessel was surveyed by meeting with officers of troubled ship, checking of drawings on the new built and surveyor report of adjuster company. Additionally, the material of propeller had been compression tested for confirming the impact strength. The result of this studies would be promote the design strength for contact force for keyless propeller, and futhermore reduce the accident of propeller slip between propeller boss and shaft.

A Study on the Fatigue Strength of Propeller Blades (프로펠러 날개의 피로강도에 관한 연구)

  • Nho, In-Sik;Lee, Chang-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.539-543
    • /
    • 2011
  • Recently, to reduce the noise and vibration levels of ships, high skewed marine propellers with thinner thickness are adopted widely, however, such propeller design trend causes to reduce the strength of blades. Propeller blades are rotating continuously in irregular wake field of ships. So, it is necessary to examine the strength of them precisely including from a viewpoint of fatigue strength. In present paper, the fatigue strength of propeller blades was investigated. Firstly, fatigue tests for Al Bronze, the representative propeller material, were carried out. The S-N curve was obtained for the assessment of the fatigue crack initiation life. And the material properties C, m for the fatigue crack propagation analysis based on the Paris' equation were derived. For the 2nd stage, the structural responses of propeller blades in irregular ship wake field was carried out using the finite element analysis code. And the fatigue strength of propeller blades were considered based on the calculated stress levels and material characteristics for fatigue strength.

An Experimental Study for Construction of Aerodynamic Database of the Commercial Propeller (상용 프로펠러 공력 데이터베이스 구축을 위한 실험적 연구)

  • Shim, HoJoon;Kim, Geon-Hong;Cheon, HyeJin
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.60-71
    • /
    • 2021
  • Propeller performance measurement system for commercial propeller was designed and applied to the wind tunnel test for 3 commercial propeller models with diameters of 30 inch. The thrust and torque of the propeller was directly measured by using 6-components balance installed on the rotating axis. The measurement system was validated by using wind tunnel balance calibration equipment. Propeller test stand including measurement and rotating system was validated by using QTP propeller. In the hovering condition, we compared the performance test results and the specifications of the commercial propeller provided by the manufacturer and confirmed that there are differences in the thrust and the torque. We measured the propeller performance with various wind speeds, propeller models and angles of attack and was summarized by thrust coefficients. We confirmed that the trend of the thrust coefficients was different in the low angle of attack and high angle of attack. An aerodynamics database that can be used for future aerodynamic design of an unmanned aerial vehicle was secured.

Flow simulation and efficiency hill chart prediction for a Propeller turbine

  • Vu, Thi;Koller, Marcel;Gauthier, Maxime;Deschenes, Claire
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.2
    • /
    • pp.243-254
    • /
    • 2011
  • In the present paper, we focus on the flow computation of a low head Propeller turbine at a wide range of design and off-design operating conditions. First, we will present the results on the efficiency hill chart prediction of the Propeller turbine and discuss the consequences of using non-homologous blade geometries for the CFD simulation. The flow characteristics of the entire turbine will be also investigated and compared with experimental data at different measurement planes. Two operating conditions are selected, the first one at the best efficiency point and the second one at part load condition. At the same time, for the same selected operating points, the numerical results for the entire turbine simulation will be compared with flow simulation with our standard stage calculation approach which includes only guide vane, runner and draft tube geometries.

A Study on the Effects of Dynamic Vibration Absorber for Driveline with Propeller Shaft Supported by Center Bearing (센터 베어링으로 지지된 추진축을 갖는 구동계에서의 진동흡진기의 영향에 대한 연구)

  • 강영춘;임재환;정호일;이규령;이창노;임홍재
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.925-930
    • /
    • 2004
  • This paper is to study vibration effects of the dynamic vibration absorber. Multi-body dynamic analysis is carried out for the vehicle driveline model using ADAMS with flexible propeller shaft attached with the vibration damper. Primary bending mode frequency of the propeller shaft is obtained from the simulation and coincides with the experimental result. Various design parameters are studied in dynamic simulation operated by the engine torque input. This paper identifies the responses of dynamic vibration absorbers in the driveline with propeller shaft, which will be used to find out optimal design parameters.

  • PDF

A study on the design of the press fit joint for automotive aluminum/composite hybrid propeller shaft (자동차용 알루미늄/복합재료 하이브리드 동력전달축의 압입접합부 설계에 관한 연구)

  • Kim, Hak-Sung;Lee, Dai-Gil
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.226-231
    • /
    • 2004
  • Press fitting method for joining of a hybrid tube and steel ring with small teeth for automotive aluminum/composite hybrid propeller shaft was devised to improve reliability and to reduce manufacturing cost, compared to other joining methods such as an adhesively bonded joint, bolted joint or welded joint. To obtain high strength of the press fit joint, an optimal design method for the teeth was devised with respect to number and shape of the steel teeth. Torsional static, fatigue tests and finite element analysis of the press fit joint were performed with respect to experimental variables. The developed optimal design method predicted well the static torque capability and failure mode of the press fit joint. Also, it provided design guide line of press fit joint for improving torsional static and fatigue characteristics.

  • PDF

Development of Internet-Based Propeller Design System (인터넷 기반 프로펠러 설계 시스템 개발)

  • 이왕수;박범진;이창섭
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.6
    • /
    • pp.69-79
    • /
    • 2003
  • Existing large-scale complex programs usually reside In a single computer, and the user has to be physically in contact with the computer. With the wide spread use of the internet, the need to carry out the design and analysis tasks geographically away from the main computer is increasing. In this paper existing Windows-based propeller design and analysis package is separated into the server-client modules and the protocol program is developed to implement the communication between multi-client computers and a single server computer. A new protocol packet is designed to use the Windows socket and the server/client programs control the receive/send operations using the information transmitted in the packet. Test runs show that the remote user, connected to the server computer through the internet only, can perform the required tasks.

Numerical and experimental investigation of conventional and un-conventional preswirl duct for VLCC

  • Shin, Hyun-Joon;Lee, Jong-Seung;Lee, Kang-Hoon;Han, Myung-Ryun;Hur, Eui-Beom;Shin, Sung-Chul
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.414-430
    • /
    • 2013
  • This paper shows the study of preswirl duct as an effective energy saving devices that have been devised and reviewed to support the propeller performance, especially for the ship of VLCC with large block coefficients. From the bare hull wake measurements, typical upper/lower asymmetry of hull wake at the propeller disk was found. The 2 kinds of pre-swirl duct, Unconventional half circular duct and Conventional circular pre-swirl duct have been designed and reviewed to recover the loss of propeller running in that condition. The general function of the pre-swirl duct was set to work against this asymmetry of wake and generate pre-swirled flow into the propeller against the propeller rotating direction. The optimum self propulsion tests with various angle configurations were carried out and the best configuration was decided. Accordingly, cavitation test was carried out with best configuration of unconventional half circular duct. The blade surface and tip vortex cavitation behaved smoother when the duct was mounted. The hull pressure amplitudes reflected this difference, so the hull pressure amplitude with duct was smaller than that of without duct.