• Title/Summary/Keyword: propellant type

Search Result 94, Processing Time 0.027 seconds

Stress Analysis of Pressurization Type Propellant Tank in the Satellite (인공위성용 능동가압형 추진제 탱크의 응력 해석)

  • 한근조;심재준;최진철
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.21-21
    • /
    • 1997
  • 인공위성용 추진제 탱크를 개발하기 위해 여러 설계인자를 설정하여 각 인자가 탱크벽면에 미치는 응력분포 영향을 구하고, 또한 최적의 인자 값을 구하기 위해 각 인자의 변화에 따라서 구조해석을 수행하였다. 탱크 지지부 위치와 탱크 벽면 두께 변화에 따른 탱크 벽면에 미치는 응력분포 영향을 고찰하기 위해 1/4 모델을 설정하였고, 연료배출구의 위치변화(경사각돈)에 따른 응력분포는 1/2 모델을 설정하여 해석을 하였다. 탱크에 작용하는 하중은 연료압력에 의해 발생하는 정하중(350 psi)을 가하며 또한, 발사 시 발사체로부터 전달되는 최대동하중(llg)을 고려하였다. 그리고, 탱크가 인공위성에 장착될 때에 발생하는 다양한 장착조건에 대해서 구조해석을 수행하였고, 추진제 배출구 각도가 $0^{\circ}$ 에서 $25^{\circ}C$까지 변화할 때 탱크 벽면에 미치는 응력분포 영향을 구했다. 그래서 각 조건에서 구한 상당응력분포와 인자의 최적 값은 추진제 탱크를 설계하기 위한 기초적인 자료로 활용하고자 한다.

  • PDF

Survey on Laser Ablation Micro-thruster for Small Satellites (소형 인공위성을 위한 레이저 삭마 미소 추력기 개발 현황)

  • Park, Young Min;Lee, Bok Jik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.753-756
    • /
    • 2017
  • With the advancement of technology, miniaturization, integration, and weight reduction have become possible, and the existing medium and large satellites have been replaced by small satellites, and the need for a micro thruster has emerged. Laser ablation micro-thruster is a new type thruster using laser ablation. It is emerging as a new candidate in micro-thrusters with wide thrust range and low single impulse thrust. The objective of present study is to introduces the structure, propellant, and research trends of the laser ablation micro-thruster.

  • PDF

Burning of Metallized Composite Solid Rocket Propellants: from Micrometric to Nanometric Aluminum Size

  • DeLuca, Luigi T.;Galfetti, Luciano
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.886-898
    • /
    • 2008
  • A survey is offered of the present status of microaluminized propellants industrially used worldwide in most space applications, but new directions are also pointed out making profitable use of the nanoaluminized propellants currently tested in many laboratories. Different industrial- and research-type of solid rocket propellants, mainly but not only, of the well-known family oxidizer/Al/HTPB(oxidizer being AP, AN or a mixture of the two) were experimentally analyzed at the Space Propulsion Laboratory of Politecnico di Milano. In general, they feature the same nominal composition but implement different grain size distributions of the oxidizer or metal fuel. The basic properties of all formulations were compared to that of a standard propellant already certified for flight.

  • PDF

Spray Characteristics in the cross region of twin spray between impinging F-O-O-F type injectors (충돌형 F-O-O-F 인젝터의 이중분무 중첩영역에서의 분무특성에 관한 연구)

  • Kwon, K.C.;Lee, E.S.;Kang, S.J.;Rho, B.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.758-763
    • /
    • 2001
  • This paper presents twin spray characteristics of two impinging F-O-O-F type injectors in which fuel and oxidizer impinge on each other to atomize under the various conditions. The droplet size and velocity in the impinging spray flow field were measured using a PDPA. The droplet size and velocity were investigated at mixture ratios of 1.5, 2.0, 2.47 and 3.0 for four injectors in which two single F-O-O-F injectors were arranged at intervals of 20.8, 31.2, 41.6 and 62.4mm respectively. In general, the arithmetic mean diameter, SMD and standard deviation of droplet size in the interaction area (X=0 and Y=0mm) were smaller. The axial velocity in the interaction area was slightly higher. Considering the behavior of impinged droplets using the We number calculated by using the axial velocity instead of the relative velocity in line C in Fig. 1(b) for four injectors, it is consumed that the We number over 500 had the possibility to disintegrate, and the We number below 500 had it to cohere after impingement of twin spray. The results of this study can be used for the design of a nozzle for liquid propellant rockets.

  • PDF

Mass flow rate of Knudsen pump According to Membrane Type for Micro Propulsion Applications (초소형 추진장치에 적용을 위한 누센펌프의 멤브레인 종류에 따른 질유량 특성)

  • Kim, Hye-Hwan;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.36-40
    • /
    • 2008
  • Minimization of nozzle induces many flow losses in micro-propulsion system. In this study, we studied about thermal transpiration based new conceptual micro propulsion system to overcome these losses. Thermal transpiration device(Knudsen pump) having no moving parts can self-pump the gaseous propellant by temperature gradient only (cold to hot). We designed, fabricated the knudsen pump and analyzed pressure gradient efficiency of membrane according to Knudsen number under vacuum condition. In this paper, we compared mass flow rate of Knudsen pump by using different membrane type ; Polyimide and Hangi, Korean traditional paper.

  • PDF

Experimental Analysis of Small Thruster Chamber Design (소형 추력기 반응기 설계에 대한 실험적 고찰)

  • Lee, Jeong-Sub;Kim, Su-Kyum;Yu, Myoung-Jong;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.117-120
    • /
    • 2011
  • The parameters which can affect the performance of small thruster were verified by experiments. The loss of catalyst through the port for pressure sensor was prevented by chamber wall mesh. There was no performance decrease due to chamber wall mesh, and stable supply of propellant is the key of stability of the thruster. However, sudden pressure drop in the chamber can decrease the performance instantly. Therefore, the sudden pressure drop should be eliminated as much as possible. The cross type distributor showed more stable performance than circular type, and structural strength is also stronger.

  • PDF

Numerical Analysis of Combustion Characteristics in a Liquid Propellant Rocket Engine with Split-triplet Injector Elements (Split-triplet 분사기를 장착한 액체 추진제 로켓엔진의 연소특성 해석)

  • 문윤완;손채훈;김영목
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.3
    • /
    • pp.41-51
    • /
    • 2001
  • Combustion characteristics of a KSR-III liquid rocket engine with split-triplet (F-O-O-F) type injector elements are investigated numerically from the viewpoints of engine performance and combustion flowfield. To evaluate numerical analysis of liquid rocket engine with radial type injector arrangement, 2-D axisymmetric and 3-D calculations are carried out and the prediction of engine performance for design and off-design conditions is in a good agreement with hot-firing tests. According to 2-D axisymmetric and 3-D calculations, the prediction error is 3∼5 % from the standpoint of performance. Numerical results of combustion characteristics calculated through 3-D analysis agree well with hot-firing tests qualitatively at injector plate. Decreasing impinging angle and changing radial type injector arrangement to H type injector arrangement reduce effectively local high-temperature region. Also, it is examined that those affect the performance seriously. In conclusion, it is revealed that both injector arrangement and impinging angle are critical parameters to affect the performance and combustion characteristics of the liquid rocket engine.

  • PDF

Development and Performance Analysis of Gas Generator with Plunger-type Flow Control Valve for Ducted Rocket : Part I (Plunger 타입 유량조절장치를 적용한 덕티드 로켓용 가스발생기 개발 및 성능분석 : Part I)

  • Lee, Jungpyo;Han, Seongjoo;Cho, Sungbong;Kim, Kyungmoo;Lim, Jaeil;Lee, Kiyeon
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.3
    • /
    • pp.79-86
    • /
    • 2021
  • For a preliminary study on a thrust-throttleable Variable Flow Ducted Rocket, a gas generator and flow control valve were developed, and ground combustion tests were performed. The gas generator and flow control valve operated at the required performance level for parameters, such as heat-resistance, combustion-time, pressure, and temperature. The combustion characteristics of a fuel-rich solid propellant mixed with Boron/MgAl/AP, etc., were also analyzed. A Plunger-type flow control valve was designed to control the discharge flow area, and it was confirmed that the flow control valve was able to control the combustion gas flow rate and pressure. However, due to the reduction of the discharge flow area caused by adhesion of combustion products, the combustion pressure continuously increased. The analysis of the pressure increase is covered in Part 2 of this paper.

Development and Performance Test of the Kick Motor Igniter (킥모터 점화기 개발 및 성능 시험)

  • Koh, Hyeon-Seok;Kil, Gyoung-Sub;Kim, Byung-Hun;Cho, In-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.190-200
    • /
    • 2007
  • A pyrogen type igniter was designed to satisfy the requirements of KSLV-I Kick Motor system. To insure the reliability of the igniter before the production of the flight model, we have been performed the structure, environmental, combustion tests. The hydraulic test was carried out to confirm the strength of the components of the igniter. The shock and vibration tests were considered to check whether the igniter operates normally under the severe environmental condition. The combustion tests were also performed to understand the ignition characteristics with the variation of initial condition. Finally, we confirmed that the igniter could provide the acceptable energy to ignite the propellant of kick motor at the ground test.

  • PDF

Reaction of an Insensitive Munitions(IM) Igniter for Solid Propulsion System (고체 추진기관 둔감화 점화 장치의 반응)

  • Ryu, Byung-Tae;Lee, Do-Hyung;Ryoo, Baek-Neung;Choi, Hong-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.352-358
    • /
    • 2011
  • This paper describes on the study of mitigation technique in which a pyrosensor is automatically sensing the rate of risk of fire or explosion of solid rocket motor exposed to an unexpected fire and makes the rocket motor burn itself safely. SCO test was carried out with a rocket motor loaded with HTPB propellant, in which a thermal pyrosensor igniter was installed. The rocket motor in SCO test was located in an oven at $50^{\circ}C$ for 7 hours. The temperature was regulated to be elevated at the rate of $3.3^{\circ}C$ per hour. Results showed Type V(Burning) reaction in this SCO test.

  • PDF