• Title/Summary/Keyword: propane gas

Search Result 262, Processing Time 0.034 seconds

An Experimental Study on Thermal Efficiency Characteristics with Propane-DME Mixture Ratio for Residential Gas Range (Propane-DME 혼합비율에 따른 가정용 가스레인지의 열효율 특성에 관한 실험적 연구)

  • Ahn, Jae-Uk;Hwang, Hyun-Cheol;Kim, Young-Gyu;Kwon, Jeong-Rock
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.81-84
    • /
    • 2008
  • In this paper, the research was applied the mixture gas of Propane-DME (dimethyl ether) for being commercialization to residential gas ranges. In order to examine a correspondence between Korean Standard and thermal efficiency characteristics at each burner, experiments were performed with 100% Propane and the mixture gas of 80% Propane-20% DME. The experimental results were shown that the higher a mixture ratio of DME was used, the lower a thermal efficiency was gained. Those were due to low caloric value of DME. With 80% Propane-20% DME mixture gas, one of residential gas ranges was not satisfied the condition for the thermal efficiency value, 40%, Korean Standard. Consequently, the research needs about the standard for being commercialization to the mixture gas of Propane-DME.

  • PDF

A Verification Test on Safety Standards of Portable Propane Gas Stove for Safe Camping Culture (안전한 캠핑 문화의 정착을 위한 야외용 프로판 연소기 안전기준 실증 연구)

  • Ahn, Hyun-Soo;Choi, Suel-Ki;Lee, Chang-Eon;Kim, Young-Gu
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.293-294
    • /
    • 2014
  • In Korea, only butane gas could be used as fuel gas of the outdoor gas stove. However, butane is not vaporized well at low temperatures. For this reason, in the field, nozzle of the portable butane gas stove is converted illegally to use propane gas. Because vapor pressure of propane gas is higher than that of butane gas at same temperature, gas accidents such as gas leakage could be occurred. To prevent gas accidents and use portable propane gas stoves safely, international standards need to be analyzed and verification tests need to be performed with prototype stove. This study could suggest to revise standard for safety improvement with portable propane gas stoves.

  • PDF

Characteristics of methane and propane leaking gas images (methane과 propane의 누출 Optical Gas Image의 특성연구)

  • Park, Suri;Han, Sang-wook;Kim, Byung-jick
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.4
    • /
    • pp.28-39
    • /
    • 2019
  • In this paper is image characteristics of main gas can be a basic data for the identification of the type of leaking gas and the estimation of the emission quantity in OGI(Optical Gas Image) technology. The purpose of this research is to observe the differences of leaking gas images of the two important hydrocarbons of methane and propane in the industry. We fabricated a wind shield of quartz-based with infrared-permeable properties was prepared and methane and propane were simultaneous emission and then photographed with an infrared OGI camera and we are analyzed it. We have a stable image with windbreak of quartz-based minimizes the effect of wind. As a result of analyzing the image of two hydrocarbons with a leakage gas reference value of 1 L/min, an easily recognizable distances by OGI camera were 6 m for methane and 9 m for propane. In the distances range of 1 to 10 m between the infrared camera and the leaking gas point, the gas plume size of the propane gas was larger and clear than that of the methane gas plume. Compared with the number of points in the image, propane was 3.8 times more than methane.

Field Gas-Sparging Tests for In Situ Aerobic Cometabolism of Trichloroethylene(TCE)

  • Kim Young;Istok Jonathan D.;Semprini Lewis;Oa Sung-Wook
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.54-56
    • /
    • 2006
  • Single-well-gas-sparging tests were developed and evaluated for assessing the feasibility of in-situ aerobic cometabolism of trichloroethylene (TCE), using propane as a growth substrate. To evaluate transport characteristics of dissolved solutes [sulfur hexafluoride (SF6) or bromide (non-reactive tracers), propane (a growth substrate), ethylene, propylene (nontoxic surrogates to probe for CAH transformation activity), and DO], push-pull transport tests were performed. Mass balance showed about 90% of the injected bromide and about 80% of the injected SF6 were recovered, and the recoveries of other solutes were comparable with bromide and slightly higher than SF6. A series of Gas-Sparging Biostimulation tests were performed by sparging propane/oxygen/argon/SF6 gas mixtures, and temporal ground water samples were obtained from the injection well under natural gradient 'drift' conditions. The decreased time for propane depletion and the longer time to deplete SF6 as a conservative tracer indicate the progress of biostimulation. Gas-Sparging Activity tests were performed. .Propane utilization, DO consumption, and ethylene and propylene cometabolism were well demonstrated. The stimulated propane-utilizers cometabolized ethylene and propylene to produce ethylene oxide and propylene oxide, as cometabolic by-products, respectively. Gas-Sparging Acetylene Blocking tests were performed by sparging gas mixtures including acetylene to demonstrate the involvement of monooxygenase enzymes. Gas substrate degradation was essentially completely Inhibited in the presence of acetylene, and no production of the corresponding oxides was also observed. The Gas-Sparging tests supports the evidences that the successive stimulation of propane-oxidizing microorganisms, cometabolic transformation of ethylene and propylene by the enzyme responsible for methane and propane degradation.

  • PDF

Measurement of Minimum Ignition Energy by Electrostatic Discharge for Flammable Ternary Gas Mixtures (3성분계 인화성 혼합가스의 최소점화에너지 측정에 관한 연구)

  • Choi, Sang-Won
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.1
    • /
    • pp.29-34
    • /
    • 2013
  • When flammable gases are mixed with air or oxygen in the explosion concentration range and are ignited by sufficiently large electrostatic discharge energy, they may explode causing severe disaster in workplace. The minimum ignition energy(MIE) of single gas-air mixtures has been already investigated by many research, but the MIE of mixtures of more than ternary gas mixture is not examined yet. The purpose of this study is to investigate the MIE of a ternary gas(methane, ethylene, hydrogen, propane) mixtures experimentally. The results of our experiment show that the ignition of a methane-ethylene-air, methane-hydrogen-air, methane-propane-air, ethylene-hydrogen-air, ethylene-propane-air and hydrogen-propane-air mixture due to electrostatic discharge energy primarily depends on that the mixture: the MIE decreases gradually with the increase of having the lower MIE than other mixture ratio in the normal atmospheric pressure.

Case Studies for Optimizing Energy Efficiency of Propane Cycle Pressure Levels on C3-MR Process (C3-MR 공정의 프로판 사이클 압력 레벨에 따른 에너지효율 최적화를 위한 사례연구)

  • Lee, In-Kyu;Tak, Kyung-Jae;Lim, Won-Sub;Moon, Il;Kim, Hak-Sung;Choi, Kwang-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.6
    • /
    • pp.38-43
    • /
    • 2011
  • Natural gas liquefaction process runs under cryogenic condition, and it spends large amount of energy. Minimizing energy consumption of natural gas liquefaction process is an important issue because of its physical characteristics. Among many kinds of natural gas liquefaction processes, C3-MR(Propane Pre-cooled Mixed Refrigerant) process uses two kind of refrigerants. One is the propane as the pure refrigerant(PR) and the other is the mixed refrigerant(MR). In this study, to find the optimal compressing level, propane cycle is simulated on different pressure level. The case study result shows relationship between energy consumption and pressure level. As a result, the conclusion is that at a higher pressure level, process consumes lower energy. At 5 pressure-levels, energy consumption is 23.7% lower than 3 pressure-levels.

A Study for the Safety on the Flame Exposure of the Propane Cylinder (소형 프로판 용기의 화염 노출에 대한 안전성 연구)

  • Yim, Sang-Sik;Jang, Kap-Man;Lee, Jin-Han;Park, Gi-Dong;Kim, Ki-Bum
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.5
    • /
    • pp.36-40
    • /
    • 2015
  • To evaluate the safety of propane cylinder, the flame test was performed by the flame exposure scenario of propane cylinder. The cylinder which was exposed in a flame was rapidly occurred to increase the internal pressure by liquid expansion, if so it cause of physical explosion. Therefore, the cylinder which was applied with thermal pressure relief device sholud be not bursted and the propane should be discharged to outside safely. The flame average temperature that was around of cylinder is $600^{\circ}C$, and then it increased $700^{\circ}C$ by discharged propane. The result of flame test, the cylinder was deformed, but it was not bursted. The regulations of flame exposure test for propane cylinder were not restricted, this paper can be applied to restrict the flame test if the cylinder is possible to expose the flame. Also, the results is expected as reference for estimation of the pressure cylinder performance.

Shape Change Analysis of a Small Propane Container by Pressure Test (소형프로판용기 내압시험을 통한 용기의 형상변화 분석)

  • Lee, Jong-Sang;Jang, Kap-Man;Lee, Yoon Hyoung;Yim, Sang-Sik;Lee, Jin-Han
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.6
    • /
    • pp.40-44
    • /
    • 2014
  • In this study, it is analyzed that a change in the shape of small propane containers made of STS304 when increasing of internal pressure. When internal pressure of a small propane container increased, bottom of end plate is convexly changed. This test is applied to a water bath pressure test to analyze the characteristics of the container. Water bath is able to analyze relationship between internal pressure and volume. In result, shape change section is confirmed because bottom of end plate is convexly changed. In addition, this section tend to decrease internal pressure because a volume increment increase out of proportion to pressure. The results of this study are expected to contribute to improving the safety of the pressure vessel, as well as various small propane container.

The Analytical Bias of Total Hydrocarbon (THC) Measurements in Relation to the Selection of Standard Gas Compound (총탄화수소의 계측에서 표준시료성분의 선택에 따른 오차 발생 연구)

  • Kim, Ki-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.4
    • /
    • pp.449-452
    • /
    • 2010
  • In this article, the performance of the THC analyzer was inspected using two different span gases of methane ($CH_4$) and propane ($C_3H_8$). To explore the effect of standard gas selection, MicroFID system was tested by the following procedures. Initially, the system is spanned by propane gas of 60 ppm (or 180 ppmC). The system is then run against methane standards prepared at 5 different concentrations of 200, 250, 300, 400, and 500 ppm. According to the suggestion of the KMOE's test procedure to use multiplying a factor of 3 (for propane), the resulting THC values derived by methane standards were systematically biased with ~500% error relative to true value. This paper discusses the interpretation procedures to obtain the least biased THC values for a given span set-up.

Determination of Stream Reaeration Coefficient Using Modified Gas Tracer Method (Modified Gas Tracer Method 를 이용한 하천 재폭기계수의 산정)

  • 조영준
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.4
    • /
    • pp.57-65
    • /
    • 1999
  • A modified gas tracer method was used to obtain reaeration coefficient from an artificial channel and a reach of Bokha stream, Ichon city. Propane was used as the tracer gas and Rhodamine-B dye as a dispersion and dulution tracer. Concentrations of propane in water sample were measured using a gas chromatograph and concentrationsof dye using UV-Spectrophotometer. To compare measured values with predicted values,commonly used 14 equations were selected . Results of this study suggested that the modified gas tracer method is a potentially useful procedure for th edetermination of reaeration cofficients. However, estimated reaeration coefficients from predictive equations were significantly different from that of this study. Therefore, when using predictive equations, careful selection of equation with consideration for hydraulic characteristics such as flow depth and average velocity, or use of newly derived predictive equation which is adequate for questioned stream would be needed.

  • PDF