• Title/Summary/Keyword: propagations

Search Result 141, Processing Time 0.035 seconds

Flame Propagations of Gasoline-Air Mixtures by Electrostatic Discharge Energies (정전기 방전에너지에 따른 가솔린-공기 혼합물의 화염전파)

  • Park, Dal-Jae;Kim, Nam-Il
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.3
    • /
    • pp.6-10
    • /
    • 2011
  • Experimental studies were carried out to investigate the effects on flame propagation of gasoline-air mixtures by different electrostatic discharge energies in a cylindrical chamber. Three different ignition energies were used: 1 mJ, 50 mJ and 98 mJ. In this work, a high-speed particle image velocimetry technique was applied to visualize the flow-field around ignition electrodes. It was found that as the ignition energy increased, the ignition kernel was different. The different ignition kernel caused different flame initiation. During the flame initiation, the higher ignition energy was applied, the higher flame speed was observed. However, with increasing time, the flame speeds were independent of the ignition energies used. Theses observed flame behaviors were similar to computational simulations shown in the literature. It was also found that as the ignition energies increased, the velocities of unburnt mixtures ahead of propagating flame fronts increased.

The Traffic Analysis of P2P-based Storm Botnet using Honeynet (허니넷을 이용한 P2P 기반 Storm 봇넷의 트래픽 분석)

  • Han, Kyoung-Soo;Lim, Kwang-Hyuk;Im, Eul-Gyu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.4
    • /
    • pp.51-61
    • /
    • 2009
  • Recently, the cyber-attacks using botnets are being increased, Because these attacks pursue the money, the criminal aspect is also being increased, There are spreading of spam mail, DDoS(Distributed Denial of Service) attacks, propagations of malicious codes and malwares, phishings. leaks of sensitive informations as cyber-attacks that used botnets. There are many studies about detection and mitigation techniques against centralized botnets, namely IRC and HITP botnets. However, P2P botnets are still in an early stage of their studies. In this paper, we analyzed the traffics of the Peacomm bot that is one of P2P-based storm bot by using honeynet which is utilized in active analysis of network attacks. As a result, we could see that the Peacomm bot sends a large number of UDP packets to the zombies in wide network through P2P. Furthermore, we could know that the Peacomm bot makes the scale of botnet maintained and extended through these results. We expect that these results are used as a basis of detection and mitigation techniques against P2P botnets.

Investigation of subcooled boiling wall closures at high pressure using a two-phase CFD code

  • Alatrash, Yazan;Cho, Yun Je;Song, Chul-Hwa;Yoon, Han Young
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2276-2296
    • /
    • 2022
  • This study validates the applicability of the CUPID code for simulating subcooled wall boiling under high-pressure conditions against number of DEBORA tests. In addition, a new numerical technique in which the interfacial momentum non-drag forces are calculated at the cell faces rather than the center is presented. This method reduced the numerical instability often triggered by calculating these terms at the cell center. Simulation results showed good agreement against the experimental data except for the bubble sizes in the bulk. Thus, a new model to calculate the Sauter mean diameter is proposed. Next, the effect of the relationship between the bubble departure diameter (Ddep) and the nucleation site density (N) on the performance of the Wall Heat Flux Partitioning (WHFP) model is investigated. Three correlations for Ddep and two for N are grouped into six combinations. Results by the different combinations show that despite the significant difference in the calculated Ddep, most combinations reasonably predict vapor distribution and liquid temperature. Analysis of the axial propagations of wall boiling parameters shows that the N term stabilizes the inconsistences in Ddep values by following a behavior reflective of Ddep to keep the total energy balance. Moreover, ratio of the heat flux components vary widely along the flow depending on the combinations. These results suggest that separate validation of Ddep correlations may be insufficient since its performance relies on the accompanying N correlations.

Residual capacity assessment of post-damaged RC columns exposed to high strain rate loading

  • Abedini, Masoud;Zhang, Chunwei
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.389-408
    • /
    • 2022
  • Residual capacity is defined as the load carrying capacity of an RC column after undergoing severe damage. Evaluation of residual capacity of RC columns is necessary to avoid damage initiation in RC structures. The central aspect of the current research is to propose an empirical formula to estimate the residual capacity of RC columns after undergoing severe damage. This formula facilitates decision making of whether a replacement or a repair of the damaged column is adequate for further use. Available literature mainly focused on the simulation of explosion loads by using simplified pressure time histories to develop residual capacity of RC columns and rarely simulated the actual explosive. Therefore, there is a gap in the literature concerning general relation between blast damage of columns with different explosive loading conditions for a reliable and quick evaluation of column behavior subjected to blast loading. In this paper, the Arbitrary Lagrangian Eulerian (ALE) technique is implemented to simulate high fidelity blast pressure propagations. LS-DYNA software is utilized to solve the finite element (FE) model. The FE model is validated against the practical blast tests, and outcomes are in good agreement with test results. Multivariate linear regression (MLR) method is utilized to derive an analytical formula. The analytical formula predicts the residual capacity of RC columns as functions of structural element parameters. Based on intensive numerical simulation data, it is found that column depth, longitudinal reinforcement ratio, concrete strength and column width have significant effects on the residual axial load carrying capacity of reinforced concrete column under blast loads. Increasing column depth and longitudinal reinforcement ratio that provides better confinement to concrete are very effective in the residual capacity of RC column subjected to blast loads. Data obtained with this study can broaden the knowledge of structural response to blast and improve FE models to simulate the blast performance of concrete structures.

A Study on the Ray Based Broad Band Modeling for Shallow Water Acoustic Wave Propagations (천해 음파전달 모의에 적합한 음선기반 광대역 신호 모델링 기법에 관한 연구)

  • Park Cheol-Soo;Cho Yong-Jin;Ahn Jong-Woo;Seong Woo-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.298-304
    • /
    • 2006
  • This paper proposes a ray-based forward modeling scheme which is suitable for the shallow water acoustic wave propagation simulations. The proposed model comprises of ray tracings for the layered media of which sound speed profiles are interpolated linearly. considerations of plane and spherical wave reflection coefficients. and calculations of the phases and the amplitudes of eigen rays. The main characteristic of the scheme is fast simulation time due to direct calculation of the broad-band time signals in the time-domain, i.e. without transformation of the frequency-domain solutions to the time si 밍 131s. Finally, we applied the model to 4-types of test environments and compared the resulting signals with those of ORCA and Ram in order to validate the proposed model.

A Numerical Method for Analysis of the Sound and Vibration of Waveguides Coupled with External Fluid (외부 유체와 연성된 도파관의 진동 및 소음 해석 기법)

  • Ryue, Jung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.7
    • /
    • pp.448-457
    • /
    • 2010
  • Vibrations and wave propagations in waveguide structures can be analysed efficiently by using waveguide finite element (WFE) method. The WFE method only models the 2-dimensional cross-section of the waveguide with finite elements so that the size of the model and computing time are much less than those of the 3-dimensional FE models. For cylindrical shells or pipes which have simple cross-sections, the external coupling with fluids can be treated theoretically. For waveguides of complex cross-sectional geometries, however, numerical methods are required to deal with external fluids. In this numerical approach, the external fluid is modelled by the boundary elements (BEs) and connected to WFEs. In order to validate this WFE/BE method, a pipe submerged in water is considered in this study. The dispersion diagrams and point mobilities of the pipe simulated are compared to those that theoretically obtained. Also the acoustic powers radiated from the pipe are predicted and compared in both cases of air and water as an external medium.

Investigating wave propagation in sigmoid-FGM imperfect plates with accurate Quasi-3D HSDTs

  • Mokhtar Nebab;Hassen Ait Atmane;Riadh Bennai
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.185-202
    • /
    • 2024
  • In this research paper, and for the first time, wave propagations in sigmoidal imperfect functionally graded material plates are investigated using a simplified quasi-three-dimensionally higher shear deformation theory (Quasi-3D HSDTs). By employing an indeterminate integral for the transverse displacement in the shear components, the number of unknowns and governing equations in the current theory is reduced, thereby simplifying its application. Consequently, the present theories exhibit five fewer unknown variables compared to other Quasi-3D theories documented in the literature, eliminating the need for any correction coefficients as seen in the first shear deformation theory. The material properties of the functionally graded plates smoothly vary across the cross-section according to a sigmoid power law. The plates are considered imperfect, indicating a pore distribution throughout their thickness. The distribution of porosities is categorized into two types: even or uneven, with linear (L)-Type, exponential (E)-Type, logarithmic (Log)-Type, and Sinus (S)-Type distributions. The current quasi-3D shear deformation theories are applied to formulate governing equations for determining wave frequencies, and phase velocities are derived using Hamilton's principle. Dispersion relations are assumed as an analytical solution, and they are applied to obtain wave frequencies and phase velocities. A comprehensive parametric study is conducted to elucidate the influences of wavenumber, volume fraction, thickness ratio, and types of porosity distributions on wave propagation and phase velocities of the S-FGM plate. The findings of this investigation hold potential utility for studying and designing techniques for ultrasonic inspection and structural health monitoring.

A Calculation of the Propagation for Focused Beams Using BPM (BPM을 이용한 안테나 배열의 집속 빔 전파 해석)

  • Kim Jaeheung;Cho Choon Sik;Lee Jae W.
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.5 s.96
    • /
    • pp.465-471
    • /
    • 2005
  • A method of calculation fur propagating and focusing of focused beams generated in antenna arrays, using BPM(Beam Propagation Method), is presented in this paper. Based on the diffraction theory, the beam focusing and Propagation is studied specially for the case of the antenna way fed by the Rotman lens that is able to focus microwave power on its focal arc or generate multiple beams. There are difficulties in performing a full-wave simulation using a commercial EM simulation tool for propagating and focusing of beams because of the structural complexity and the feeding assignment of the antenna array. Therefore, as an alternative solution, the BPM is presented to calculate the beam propagation from the aperture-type antennas. From the point of view of optics, the propagations of the lens have been simplified from the Fresnel diffraction integral to the Fourier transform. Using Fourier Transform, a beam propagation method is developed to show improvement of the resolution by controlling the wavefront of wave Propagating from an aperture-type antenna array. The beam width(or spot size) and the intensity are calculated for a focused beam propagating from an array having $10\lambda$ of its size. For the beams with $20\lambda,\;30\lambda$, and $50\lambda$ of geometrical focal length, the half-power beam widths(or spot size) are about 1.1\lambda,\;1.3\lambda,\;and\;1.9\lambda$ respectively.

A New Error Concealment Based on Edge Detection (에지검출을 기반으로 한 새로운 에러 은닉 기법)

  • Yang, Yo-Jin;Son, Nam-Rye;Lee, Guee-Sang
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.6
    • /
    • pp.623-629
    • /
    • 2002
  • In transmitting compressed video bit-stream over Internet, packet losses cause error propagations in both spatial and temporal domains, which in turn leads to severe degradation I image quality. In this paper, a new error concealment algorithm, called EBMA(Edge Detection based Boundary Matching Algorithm), is proposed to repair damaged portions of the video frames in the receiver. Conventional BMA(Boundary Matching Algorithm) assumes that the pixels on the boundary of the missing block and its neighboring blocks are very similar, but has no consideration of edges across the boundary. In our approach, the edges are detected across the boundary of the lost or erroneous block. Once the orientation of each edge is found, only the pixel difference along the expected edges across the boundary is measured instead of the calculation of difference along the expected edges across the boundary is measured instead of the calculation of differences between all adjacent pixels on the boundary Therefore, the proposed approach needs very few computations and the experiment shows and improvement of the performance over the conventional BMA in terms of both subjective and objective quality of video sequences.

Combustion Characteristics of Volume Variation of Torch in a CVCC (토치 점화 장치의 체적에 따른 연소특성 파악)

  • Kwon, Soon-Tae;Kim, Hyeong-Sig;Choi, Chang-Hyeon;Park, Chan-Jun;Ohm, In-Young
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2010.04a
    • /
    • pp.166-170
    • /
    • 2010
  • Six different size of torch-ignition device were applied in a constant volume combustion chamber for evaluating the effects of torch-ignition on combustion. The torch-ignition device was designed six different volumes and same orifice size. The combustion pressures were measured to calculate the mass burn fraction and combustion enhancement rate. In addition, the flame propagations were visualized by shadowgraph method for the qualitative comparison. The result showed that the combustion pressure and mass burn fraction were increased when using the torch ignition device. And the combustion duration were decreased. The combustion enhancement rates of torch-ignition cases were improved in comparison with conventional spark ignition. Finally, the visualization results showed that the torch-ignition device the torch-ignition induced faster burn than conventional spark ignition due to the earlier transition to turbulent flame and larger flame surface, during the initial stage. And the initial flame propagation was effected torch-ignition volume.

  • PDF