• Title/Summary/Keyword: promoter analysis

Search Result 843, Processing Time 0.035 seconds

Association Between MDM2 Promoter SNP309 T/G Polymorphism and Liver Cancer Risk - a Meta-analysis

  • Ma, Hong-Bo;Huang, Tao;Han, Feng;Chen, Wei-Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2841-2846
    • /
    • 2012
  • Background: Many studies have investigated the association between the MDM2 promoter SNP309 T/G polymorphism and liver cancer risk, but inconsistencies make drawwing definitive conclusions difficult. Methods: We therefore searched main databases for articles relating MDM2 SNP309 T/G polymorphism to risk of liver cancer in humans and estimated summary odds ratio (OR) with 95% confidence intervals (95% CI) to assess the possible association in a meta-analysis. Results: The main analysis revealed no significant heterogeneity, and the pooled ORs of fixed-effects were all significant (for G versus T, OR = 1.59, 95% CI 1.42-1.78; for GG versus TT, OR = 2.45, 95% CI 1.93-3.12; for GT versus TT, OR = 1.70, 95% CI 1.38-2.09; for GG versus GT, OR = 1.49, 95% CI 1.24-1.79; for GG and GT versus TT, OR = 1.95, 95% CI 1.61-2.38; for GG versus TT and GT, OR = 1.73, 95% CI 1.46-2.07). Subgroup analyses by ethnicity and sensitivity analyses both showed associations to remain significant. Conclusion: The present meta-analysis of available data showed a significant association between the MDM2 SNP309 T/G polymorphism and liver cancer risk, the MDM2 SNP309 G allele contributing to increased risk in both Asians and Caucasians in a graded, dose-dependent fashion.

Expression of the Promoter for the Maltogenic Amylase Gene in Bacillus subtilis 168

  • Kim Do-Yeon;Cha Choon-Hwan;Oh Wan-Seok;Yoon Young-Jun;Kim Jung-Wan
    • Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.319-327
    • /
    • 2004
  • An additional amylase, besides the typical $\alpha-amylase,$ was detected for the first time in the cytoplasm of B. subtilis SUH4-2, an isolate from Korean soil. The corresponding gene (bbmA) encoded a malto­genic amylase (MAase) and its sequence was almost identical to the yvdF gene of B. subtilis 168, whose function was unknown. Southern blot analysis using bbmA as the probe indicated that this gene was ubiquitous among various B. subtilis strains. In an effort to understand the physiological function of the bbmA gene in B. subtilis, the expression pattern of the gene was monitored by measuring the $\beta-galactosidase$ activity produced from the bbmA promoter fused to the amino terminus of the lacZ struc­tural gene, which was then integrated into the amyE locus on the B. subtilis 168 chromosome. The pro­moter was induced during the mid-log phase and fully expressed at the early stationary phase in defined media containing $\beta--cyclodextrin\;(\beta-CD),$ maltose, or starch. On the other hand, it was kept repressed in the presence of glucose, fructose, sucrose, or glycerol, suggesting that catabolite repression might be involved in the expression of the gene. Production of the $\beta-CD$ hydrolyzing activity was impaired by the spo0A mutation in B. subtilis 168, indicating the involvement of an additional regu­latory system exerting control on the promoter. Inactivation of yvdF resulted in a significant decrease of the $\beta-CD$ hydrolyzing activity, if not all. This result implied the presence of an additional enzyme(s) that is capable of hydrolyzing $\beta-CD$ in B. subtilis 168. Based on the results, MAase encoded by bbmA is likely to be involved in maltose and $\beta-CD$ utilization when other sugars, which are readily usable as an energy source, are not available during the stationary phase.

Effects of the Antibiotics Growth Promoter Tylosin on Swine Gut Microbiota

  • Kim, Jungman;Guevarra, Robin B.;Nguyen, Son G.;Lee, Ji-Hoon;Jeong, Dong Kee;Unno, Tatsuya
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.5
    • /
    • pp.876-882
    • /
    • 2016
  • Tylosin has been used as a livestock feed additive and antibiotic growth promoter for many years. However, the mode of action by which tylosin enhances animal growth is unclear. We used high-throughput sequencing of 16S rRNA genes to investigate the effects of tylosin as a feed additive on swine gut microbiota. No significant difference in the rate of weight increase was observed between control and tylosin-treated pigs during a 10-week feeding trial. However, tylosin-treated pigs showed rapid increases in the relative abundance of the phylum Firmicutes. Increases in Firmicutes species are associated with (so-called) obese-type gut microbiota. The abundance of species of four families of the phylum Firmicutes (Streptococcaceae, Peptococcaceae, Peptostreptococcaceae, and Clostridiaceae) correlated positively with host weight gain. The abundance of Streptococcaceae family bacteria was least affected by tylosin treatment. Distribution analysis of operational taxonomic units (OTUs) showed that both control and tylosin-treated pigs exhibited similar OTU alterations during growth. However, the tylosin-treated group showed distinctive alterations in gut microbiota when the host weighed approximately 60 kg, whereas similar alterations occurred at around 80 kg in the control group. Our results suggest that use of tylosin accelerates maturation of swine gut microbiota rather than altering its composition.

Expression of BMP6 is Associated with its Methylation Status in Colorectal Cancer Tissue but Lacks Prognostic Significance

  • Sangplod, Patcharaporn;Kanngurn, Samornmas;Boonpipattanapong, Teeranut;Ruangrat, Pritsana;Sangkhathat, Surasak
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7091-7095
    • /
    • 2014
  • Background: The study aimed to evaluate the incidence of CpG island promoter methylation of BMP6, a member of the transforming growth factor beta family, in tissue samples from colorectal cancers (CRC) and look for its association with BMP6 expression and clinicopathological correlation. Materials and Methods: Methylation specific PCR for the BMP6 promoter region was performed with 85 frozen tissue samples of CRC and 45 of normal colon. Methylation status of MLH1 was also determined by the same method. Expression of BMP6 was evaluated by immunohistochemistry (IHC), using Allred's scoring system. The methylation status was analyzed against clinical and pathological parameters in CRC. Results: The study revealed BMP6 hypermethylation in 34 of 85 tumor specimens (40%), and 15 out of 45 normal tissue samples from CRC (33%). The incidence of hypermethylation was inversely correlated with IHC score. Allred's scores of 7 or more were correlated with lower frequency of BMP6 hypermethylation (29% compared to 50% in the remaining, p-value 0.049). However, there was no association between hypermethylation status and any clinicopathological parameters. The methylation status of BMP6 was not correlated with that of MLH1, a key methylation determinant in CRC. On survival analysis, there was no significant difference in progress-free survival (PFS) between the cases with and without hypermethylation (2-year PFS 74% and 76%, respectively). Conclusions: CpG island methylation of BMP6 is found in high frequency in CRC and this epigenetic event is associated with suppressed protein expression in the tumor tissue. However, the marker is not associated with tumor progression of the disease.

Nucleotide Sequence Analyses of p10 Gene and its Promoter of Hyphantria cunea Nuclear Polyhedrosis Virus (Hyphantria cunea Nuclear Polyhedrosis Virus p10유전자와 프로모터의 염기서열 결정)

  • Park, Sun-A;Cha, Sung-Chul;Chang, Jae-Hyeok;Lee, Hyung-Hoan
    • The Journal of Korean Society of Virology
    • /
    • v.26 no.1
    • /
    • pp.131-137
    • /
    • 1996
  • The sequences of p10 gene its promoter of Hyphantria cunea NPV were determined. According to the sequence analysis, the putative p10 gene ORF has 285 bp. The 5'-non-coding leader sequence of the p10 gene promoter contained the TATA box and the putative transcription initiation site TAAG motif. Poly (A) tail signals, AATAAA sequence was at site 65 base upstream from the 3' terminus. The deduced amino acid sequence of p10 protein was 95 with a predicted molecular weight of 10.26 kDa. In the p10 protein sequence, a hydrophobic region was present at the N-terminus of the protein, whereas the C-terminus was highly hydrophilic. The p10 protein of H. cunea NPV did not contain cysteine, histidine, trytophan, tryptophane, tyrosine, glutamine and asparagine residues.

  • PDF

Clonal Analysis of Methicillin-Resistant Staphylococcus aureus Strains in Korea

  • Kim, Jung-Min;Seol, Sung-Yong;Cho, Dong-Taek
    • The Journal of the Korean Society for Microbiology
    • /
    • v.35 no.3
    • /
    • pp.215-224
    • /
    • 2000
  • In this study, the distribution of the mec regulator genes and the presence of the mutation in mecI gene and mec promoter region among 50 MRSA clinical isolates derived from a single university hospital in Korea were analyzed. Among 50 MRSA strains, 13 strains had a deletion of mecI gene, and 37 strains were found to have mutations in mecI gene or mecA promoter region corresponding to a presumptive operator of mecA, i.e., the binding site of the repressor protein. Furthermore, in order to track the evolution of methicillin-resistant Staphylococcus aureus (MRSA) distributed in Korea, we determined the MRSA clonotype by combined use of genetic organization patterns of mec regulator genes, ribotype, and coagulase type. As the result, 48 of 50 MRSA strains could be classified into four distinct clones. Clonotype I is characterized by the coagulase type 3, deletion of mecI gene, and ribotype 1 shared by NCTC10442, the first reported MRSA isolate in England (9 strains). Clonotype II is characterized by the coagulase type 4, C to T substitution at position 202 of mecI gene, and ribotypes 2, 3 and 4 shared by 85/3619 strain isolated in Austria (10 strains). Clonotype III is characterized by the coagulase type 2, mutations of mecA promoter region and/or mecI, and ribotypes 4, 5, and 6 shared by N315 strain isolated in Japan (25 strains). Clonotype IV is characterized by the coagulase type 4, deletion of mecI gene, and ribotype 7 (4 strains). The clonality of two strains could not be determined due to their undefined ribotype.

  • PDF

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone Induces Retinoic Acid Receptor β Hypermethylation through DNA Methyltransferase 1 Accumulation in Esophageal Squamous Epithelial Cells

  • Wang, Jing;Zhao, Shu-Lei;Li, Yan;Meng, Mei;Qin, Cheng-Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2207-2212
    • /
    • 2012
  • Overexpression of DNA methyltransferase 1 (DNMT1) has been detected in many cancers. Tobacco exposure is known to induce genetic and epigenetic changes in the pathogenesis of malignancy. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is an important carcinogen present in tobacco smoke; however the detailed molecular mechanism of how NNK induces esophageal carcinogenesis is still unclear. We found that DNMT1 was overexpressed in ESCC tissues compared with paired non-cancerous tissues, the overexpression being correlated with smoking status and low expression of $RAR{\beta}$. The latter could be upregulated by NNK treatment in Het-1A cells, and the increased DNMT1 expression level reflected promoter hypermethylation and downregulation of retinoic acid receptor ${\beta}$($RAR{\beta}$). RNA interference mediated knockdown of DNMT1 resulted in promoter demethylation and upregulation of $RAR{\beta}$ in KYSE30 and TE-1 cells. 3-(4,5-Dimethyl-thiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometric analysis demonstrated that NNK treatment in Het-1A cells could enhance cell proliferation and inhibit cell apoptosis in a dose-dependent manner. In conclusion, DNMT1 overexpression is correlated with smoking status and low expression of $RAR{\beta}$ in esophageal SCC patients. NNK could induce $RAR{\beta}$ promoter hypermethylation through upregulation of DNMT1 in esophageal squamous epithelial cells, finally leading to enhancement of cell proliferation and inhibition of apoptosis.

Increased Methylation of Interleukin 6 Gene Is Associated with Obesity in Korean Women

  • Na, Yeon Kyung;Hong, Hae Sook;Lee, Won Kee;Kim, Young Hun;Kim, Dong Sun
    • Molecules and Cells
    • /
    • v.38 no.5
    • /
    • pp.452-456
    • /
    • 2015
  • Obesity is the fifth leading risk for death globally, and a significant challenge to global health. It is a common, complex, non-malignant disease and develops due to interactions between the genes and the environment. DNA methylation can act as a downstream effector of environmental signals; analysis of this process therefore holds substantial promise for identifying mechanisms through which genetic and environmental factors jointly contribute to disease risk. To assess the effects of excessive weight and obesity on gene-specific methylation levels of promoter regions, we determined the methylation status of four genes involved in inflammation and oxidative stress [interleukin 6 (IL6), tumor necrosis factor ${\alpha}$ ($TNF{\alpha}$), mitochondrial transcription factor A (TFAM), and glucose transport 4 (GLUT4)] in blood cell-derived DNA from healthy women volunteers with a range of body mass indices (BMIs) by methylation-specific PCR. Interestingly, the samples from obese individuals ($BMI{\geq}30kg/m^2$) showed significantly increased hypermethylation for IL6 gene compared to normal weight ($BMI<23kg/m^2$) and overweight sample ($23kg/m^2{\leq}BMI<30kg/m^2$) (P = 0.034 and P = 0.026). However there was no statistically significant difference in promoter methylation of the other 3 genes between each group. These findings suggest that aberrant DNA methylation of IL6 gene promoter may play an important role in the etiology and pathogenesis of obesity and IL6 methylation could be used as molecular biomarker for obesity risk assessment. Further studies are required to elucidate the potential mechanisms underlying this relationship.

A Case of Pulmonary Embolism in a Patient with a Factor VII Gene Promoter -401G/A Polymorphism (폐색전증 환자에서 발견된 Factor VII 유전자의 프로모터 -401G/A 다형성 1예)

  • Min, Bo Ram;Kim, Shin;Park, Ji Hae;Chae, Jin Nyeong;Choi, Won Il
    • Tuberculosis and Respiratory Diseases
    • /
    • v.64 no.6
    • /
    • pp.466-470
    • /
    • 2008
  • A factor VII gene -401 G/A polymorphism was identified in a patient with a pulmonary embolism. The patient was a 71-year-old woman who presented with acute-onset dyspnea. A chest CT scan revealed a pulmonary embolism. Despite the administration of low-dose warfarin as anticoagulation therapy, there was an excessively prolonged prothrombin time (PT). The blood tests revealed lower factor VII activity than normal. Full factor VII gene sequencing revealed a G to A substitution at -401 in the promoter region. There were no other gene sequence anomalies. PCR-based analysis indicated lower factor VII gene expression in the patient than in a control subject. The data suggested the promoter polymorphism to be responsible for the lower transcription level. In conclusion, we encountered a case of Factor VII DNA polymorphism in a patient with a pulmonary embolism showing significantly reduced Factor VII activity.

Production of Transgenic Maize (Zea mays L.) Using Agrobacterium tumefaciens-Mediated Transformation (Agrobacterium tumefaciens 공동배양법을 이용한 옥수수 형질전환체 생산)

  • Cho Mi-Ae;Park Yun-Ok;Kim Jin-Suck;Park Ki-Jin;Min Hwang-Ki;Liu Jang-Ryol;Clemente Tom;Choi Pil-Son
    • Journal of Plant Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.91-95
    • /
    • 2005
  • Agrobacterium tumefaciens-mediated immature embryo transformation was used to produce transgenic maize. Immature embryo of Hi II genotype were co-cultivated with strains Agrobacterium tumefaciens (C58C1) containing the binary vectors (pPTN290) carrying with Ubiquitin promoter-GUS gene as reporter gene and NOS promoter-nptll gene conferring resistance to paromomycin as selective agent. Seven embryogenic callus lines transformed showed the resistance in paromomycin antibiotics. Histochemical GUS assay showed that 7 individual lines transformed with the GUS gene were positive response among the transformants. Southern blot analysis revealed that the nptll gene segregated and expressed in their progeny.