Browse > Article
http://dx.doi.org/10.4014/jmb.1512.12004

Effects of the Antibiotics Growth Promoter Tylosin on Swine Gut Microbiota  

Kim, Jungman (Faculty of Biotechnology, College of Applied Life Science, SARI, Jeju National University)
Guevarra, Robin B. (Faculty of Biotechnology, College of Applied Life Science, SARI, Jeju National University)
Nguyen, Son G. (Faculty of Biotechnology, College of Applied Life Science, SARI, Jeju National University)
Lee, Ji-Hoon (Department of Bioenvironmental Chemistry, Chonbuk National University)
Jeong, Dong Kee (Faculty of Biotechnology, College of Applied Life Science, SARI, Jeju National University)
Unno, Tatsuya (Faculty of Biotechnology, College of Applied Life Science, SARI, Jeju National University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.5, 2016 , pp. 876-882 More about this Journal
Abstract
Tylosin has been used as a livestock feed additive and antibiotic growth promoter for many years. However, the mode of action by which tylosin enhances animal growth is unclear. We used high-throughput sequencing of 16S rRNA genes to investigate the effects of tylosin as a feed additive on swine gut microbiota. No significant difference in the rate of weight increase was observed between control and tylosin-treated pigs during a 10-week feeding trial. However, tylosin-treated pigs showed rapid increases in the relative abundance of the phylum Firmicutes. Increases in Firmicutes species are associated with (so-called) obese-type gut microbiota. The abundance of species of four families of the phylum Firmicutes (Streptococcaceae, Peptococcaceae, Peptostreptococcaceae, and Clostridiaceae) correlated positively with host weight gain. The abundance of Streptococcaceae family bacteria was least affected by tylosin treatment. Distribution analysis of operational taxonomic units (OTUs) showed that both control and tylosin-treated pigs exhibited similar OTU alterations during growth. However, the tylosin-treated group showed distinctive alterations in gut microbiota when the host weighed approximately 60 kg, whereas similar alterations occurred at around 80 kg in the control group. Our results suggest that use of tylosin accelerates maturation of swine gut microbiota rather than altering its composition.
Keywords
16S rRNA gene; antibiotics; growth promoter; swine gut microbiota; tylosin;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Biddle AS, Black SJ, Blanchard JL. 2013. An in vitro model of the horse gut microbiome enables identification of lactate-utilizing bacteria that differentially respond to starch induction. PLoS One 8: e77599.   DOI
2 Blackwood RS, Tarara RP, Christe KL, Spinner A, Lerche NW. 2008. Effects of the macrolide drug tylosin on chronic diarrhea in rhesus macaques (Macaca mulatta). Comp. Med. 58: 81-87.
3 Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, et al. 2009. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37: D141-D145.   DOI
4 Collier CT, Van der Klis JD, Deplancke B, Anderson DB, Gaskins HR. 2003. Effects of tylosin on bacterial mucolysis, Clostridium perfringens colonization, and intestinal barrier function in a chick model of necrotic enteritis. Antimicrob. Agents Chemother. 47: 3311-3317.   DOI
5 Cox LM, Blaser MJ. 2015. Antibiotics in early life and obesity. Nat. Rev. Endocrinol. 11: 182-190.   DOI
6 de Lange CFM, Pluske J, Gong J, Nyachoti CM. 2010. Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs. Livestock Sci. 134: 124-134.   DOI
7 DiBaise JK, Frank DN, Mathur R. 2012. Impact of the gut microbiota on the development of obesity: current concepts. Am. J. Gastroenterol. Suppl. 1: 22-27.   DOI
8 Dibner JJ, Richards JD. 2005. Antibiotic growth promoters in agriculture: history and mode of action. Poult. Sci. 84: 634-643.   DOI
9 Donoghue DJ. 2003. Antibiotic residues in poultry tissues and eggs: human health concerns? Poult. Sci. 82: 618-621.   DOI
10 Duncan SH, Lobley GE, Holtrop G, Ince J, Johnstone AM, Louis P, Flint HJ. 2008. Human colonic microbiota associated with diet, obesity and weight loss. Int. J. Obes. (Lond.) 32: 1720-1724.   DOI
11 Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194-2200.   DOI
12 Frese SA, Parker K, Calvert CC, Mills DA. 2015. Diet shapes the gut microbiome of pigs during nursing and weaning. Microbiome 3: 28.   DOI
13 Jackson CR, Fedorka-Cray PJ, Barrett JB, Ladely SR. 2004. Effects of tylosin use on erythromycin resistance in enterococci isolated from swine. Appl. Environ. Microbiol. 70: 4205-4210.   DOI
14 Gaggia F, Mattarelli P, Biavati B. 2010. Probiotics and prebiotics in animal feeding for safe food production. Int. J. Food Microbiol. 141: S15-S28.   DOI
15 Holman DB, Chenier MR. 2013. Impact of subtherapeutic administration of tylosin and chlortetracycline on antimicrobial resistance in farrow-to-finish swine. FEMS Microbiol. Ecol. 85: 1-13.   DOI
16 Jacela JY, DeRouchey JM, Tokach MD, Goodband RD, Nelssen JL, Renter DG, Dritz SS. 2010. Feed additives for swine: fact sheets-high dietary levels of copper and zinc for young pigs, and phytase. J. Swine Health Product. 18: 87-91.
17 Juntunen P, Heiska H, Olkkola S, Myllyniemi A-L, Hänninen M-L. 2010. Antimicrobial resistance in Campylobacter coli selected by tylosin treatment at a pig farm. Vet. Microbiol. 146: 90-97.   DOI
18 Kallus SJ, Brandt LJ. 2012. The intestinal microbiota and obesity. J. Clin. Gastroenterol. 46: 16-24.   DOI
19 Kalmokoff M, Waddington LM, Thomas M, Liang KL, Ma C, Topp E, et al. 2011. Continuous feeding of antimicrobial growth promoters to commercial swine during the growing/finishing phase does not modify faecal community erythromycin resistance or community structure. J. Appl. Microbiol. 110: 1414-1425.   DOI
20 Kay P, Blackwell PA, Boxall AB. 2005. Column studies to investigate the fate of veterinary antibiotics in clay soils following slurry application to agricultural land. Chemosphere 60: 497-507.   DOI
21 Krajmalnik-Brown R, Ilhan ZE, Kang DW, DiBaise JK. 2012. Effects of gut microbes on nutrient absorption and energy regulation. Nutr. Clin. Pract. 27: 201-214.   DOI
22 Kim HB, Borewicz K, White BA, Singer RS, Sreevatsan S, Tu ZJ, Isaacson RE. 2012. Microbial shifts in the swine distal gut in response to the treatment with antimicrobial growth promoter, tylosin. Proc. Natl. Acad. Sci. USA 109: 15485-15490.   DOI
23 Kim J, Nguyen SG, Guevarra RB, Lee I, Unno T. 2015. Analysis of swine fecal microbiota at various growth stages. Arch. Microbiol. 197: 753-759.   DOI
24 Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. 2013. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79: 5112-5120.   DOI
25 Lee KW, Ho Hong Y, Lee SH, Jang SI, Park MS, Bautista DA, et al. 2012. Effects of anticoccidial and antibiotic growth promoter programs on broiler performance and immune status. Res. Vet. Sci. 93: 721-728.   DOI
26 Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. 2005. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 102: 11070-11075.   DOI
27 Ley RE, Turnbaugh PJ, Klein S, Gordon JI. 2006. Microbial ecology: human gut microbes associated with obesity. Nature 444: 1022-1023.   DOI
28 Marquardt RR, Jin LZ, Kim JW, Fang L, Frohlich AA, Baidoo SK. 1999. Passive protective effect of egg-yolk antibodies against enterotoxigenic Escherichia coli K88+ infection in neonatal and early-weaned piglets. FEMS Immunol. Med. Microbiol. 23: 283-288.   DOI
29 Million M, Raoult D. 2013. The role of the manipulation of the gut microbiota in obesity. Curr. Infect. Dis. Rep. 15: 25-30.   DOI
30 Moran CP, Shanahan F. 2014. Gut microbiota and obesity: role in aetiology and potential therapeutic target. Best Pract. Res. Clin. Gastroenterol. 28: 585-597.   DOI
31 Murphy EF, Cotter PD, Healy S, Marques TM, O'Sullivan O, Fouhy F, et al. 2010. Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut 59: 1635-1642.   DOI
32 Norris V, Molina F, Gewirtz AT. 2013. Hypothesis: bacteria control host appetites. J. Bacteriol. 195: 411-416.   DOI
33 Pajarillo EA, Chae JP, Kim HB, Kim IH, Kang DK. 2015. Barcoded pyrosequencing-based metagenomic analysis of the faecal microbiome of three purebred pig lines after cohabitation. Appl. Microbiol. Biotechnol. 99: 5647-5656.   DOI
34 Patterson J, Chapman T, Hegedus E, Barchia I, Chin J. 2005. Selected culturable enteric bacterial populations are modified by diet acidification and the growth promotant tylosin. Lett. Appl. Microbiol. 41: 119-124.   DOI
35 Poole TL, Genovese KJ, Knape KD, Callaway TR, Bischoff KM, Nisbet DJ. 2003. Effect of subtherapeutic concentrations of tylosin on the inhibitory stringency of a mixed anaerobe continuous-flow culture of chicken microflora against Escherichia coli O157:H7. J. Appl. Microbiol. 94: 73-79.   DOI
36 Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41: D590-D596.   DOI
37 Roura E, Homedes J, Klasing KC. 1992. Prevention of immunologic stress contributes to the growth-permitting ability of dietary antibiotics in chicks. J. Nutr. 122: 2383-2390.   DOI
38 Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA, Donus C, Hardt PD. 2010. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 18: 190- 195.   DOI
39 Sanz Y, Santacruz A, De Palma G. 2008. Insights into the roles of gut microbes in obesity. Interdiscip. Perspect. Infect. Dis. 2008: 829101.
40 Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541.   DOI
41 Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13: 2498-2504.   DOI
42 Si W, Gong J, Tsao R, Zhou T, Yu H, Poppe C, et al. 2006. Antimicrobial activity of essential oils and structurally related synthetic food additives towards selected pathogenic and beneficial gut bacteria. J. Appl. Microbiol. 100: 296-305.   DOI
43 Suchodolski JS, Dowd SE, Westermarck E, Steiner JM, Wolcott RD, Spillmann T, Harmoinen JA. 2009. The effect of the macrolide antibiotic tylosin on microbial diversity in the canine small intestine as demonstrated by massive parallel 16S rRNA gene sequencing. BMC Microbiol. 9: 210.   DOI
44 Thacker PA. 2013. Alternatives to antibiotics as growth promoters for use in swine production: a review. J. Anim. Sci. Biotechnol. 4: 35.   DOI
45 Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444: 1027- 1031.   DOI
46 Walters WA, Xu Z, Knight R. 2014. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 588: 4223-4233.   DOI
47 Unno T. 2015. Bioinformatic suggestions on MiSeq-based microbial community analysis. J. Microbiol. Biotechnol. 25: 765-770.   DOI
48 Unno T, Kim JM, Guevarra RB, Nguyen SG. 2015. Effects of antibiotic growth promoter and characterization of ecological succession in swine gut microbiota. J. Microbiol. Biotechnol. 25: 431-438.   DOI
49 Van Lunen TA. 2003. Growth performance of pigs fed diets with and without tylosin phosphate supplementation and reared in a biosecure all-in all-out housing system. Can. Vet. J. 44: 571-576.
50 Zhang J, Kobert K, Flouri T, Stamatakis A. 2014. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30: 614-620.   DOI