• Title/Summary/Keyword: projective

Search Result 598, Processing Time 0.036 seconds

Post-Rendering 3D Warping using Projective Texture (투영 텍스춰를 이용한 렌더링 후 3차원 와핑)

  • Park, Hui-Won;Ihm, In-Seong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.8
    • /
    • pp.431-439
    • /
    • 2002
  • Due to the recent development of graphics hardware, real-time rendering of complex scenes is still a challenging task. As results of researches on image based rendering, the rendering schemes based on post-rendering 3D warping have been proposed. In general, these methods produce good rendering results. However, they are not appropriate for real-time rendering since it is not easy to accelerate the time-consuming algorithms within graphics subsystem. As an attempt to resolve this problem of the post-rendering 3D warping technique, we present a new real-time scheme based on projective texture. In our method, two reference images obtained by rendering complicated objects at two consecutive points of time are used. Rendering images of high quality for intermediate points of time are obtained by projecting the reference images onto a simplified object, and then blending the resulting images. Our technique will be effectively used in developing real-time graphics applications such as 3D games and virtual reality software and so on.

Coordinate Determination for Texture Mapping using Camera Calibration Method (카메라 보정을 이용한 텍스쳐 좌표 결정에 관한 연구)

  • Jeong K. W.;Lee Y.Y.;Ha S.;Park S.H.;Kim J. J.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.4
    • /
    • pp.397-405
    • /
    • 2004
  • Texture mapping is the process of covering 3D models with texture images in order to increase the visual realism of the models. For proper mapping the coordinates of texture images need to coincide with those of the 3D models. When projective images from the camera are used as texture images, the texture image coordinates are defined by a camera calibration method. The texture image coordinates are determined by the relation between the coordinate systems of the camera image and the 3D object. With the projective camera images, the distortion effect caused by the camera lenses should be compensated in order to get accurate texture coordinates. The distortion effect problem has been dealt with iterative methods, where the camera calibration coefficients are computed first without considering the distortion effect and then modified properly. The methods not only cause to change the position of the camera perspective line in the image plane, but also require more control points. In this paper, a new iterative method is suggested for reducing the error by fixing the principal points in the image plane. The method considers the image distortion effect independently and fixes the values of correction coefficients, with which the distortion coefficients can be computed with fewer control points. It is shown that the camera distortion effects are compensated with fewer numbers of control points than the previous methods and the projective texture mapping results in more realistic image.

A Computer Algorithm for the evaluation of elements in Face Stimulus Assessment (얼굴자극검사의 평가를 위한 컴퓨터 알고리즘)

  • Kim, Jong-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.1961-1968
    • /
    • 2010
  • The Face Stimulus Assessment is an efficient projective drawing test developed by Betts. This paper categorizes scales which Betts suggested into the following five groups: accuracy of painting, color fit, perception of shape, precision of drawing, and space usage. In this paper, a computer algorithm which objectively evaluates these five scales is suggested. The proposed algorithm defines the areas of the lip, eyes, hair, etc. which take on significant roles in the evaluation of the FSA and based on these factors, it calculates the grade of each scale through the main color and color ratio. The consistency of evaluations between the computer algorithm and the art therapist is measured by the Quadratic Weighted Kappa. By providing objectivity and consistency, the computer algorithm is expected to solve the problem of uncertainty found in art therapists' evaluations of projective drawing tests caused by their subjective judgment, experience, and intuition.