• Title/Summary/Keyword: programming education for non-majors

Search Result 47, Processing Time 0.024 seconds

Design of Learning Process with Code Reconstruction Principle for Non-computer Majors

  • Hye-Wuk, Jung
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.175-180
    • /
    • 2022
  • To develop computational thinking skills, university students are learning how to solve problems with algorithms, program commands and grammar, and program writing. Because non-computer majors have difficulty with computer programming-related content, they need a learning method to acquire coding knowledge from the process of understanding, interpreting, changing, and improving source codes by themselves. This study explored clone coding, refactoring coding, and coding methods using reconstruction tools, which are practical and effective learning methods for improving coding skills for students who are accustomed to coding. A coding learning process with the code reconstruction principle was designed to help non-computer majors use it to understand coding technology and develop their problem-solving ability and applied the coding technology learning method used in programmer education.

Python Basic Programming Curriculum for Non-majors and Development Analysis of Evaluation Problems (비전공자를 위한 파이썬 기초 프로그래밍 커리큘럼과 평가문제 개발분석)

  • Hur, Kyeong
    • Journal of Practical Engineering Education
    • /
    • v.14 no.1
    • /
    • pp.75-83
    • /
    • 2022
  • Most of the courses that teach the Python programming language are liberal arts courses that all students in general universities must complete. Through this, non-major students who have learned the basic programming process based on computational thinking are strengthening their convergence capabilities to apply SW in various major fields. In the previous research results, various evaluation methods for understanding the concept of computational thinking and writing code were suggested. However, there are no examples of evaluation problems, so it is difficult to apply them in actual course operation. Accordingly, in this paper, a Python basic programming curriculum that can be applied as a liberal arts subject for non-majors is proposed according to the ADDIE model. In addition, the case of evaluation problems for each Python element according to the proposed detailed curriculum was divided into 1st and 2nd phases and suggested. Finally, the validity of the proposed evaluation problem was analyzed based on the evaluation scores of non-major students calculated in the course to which this evaluation problem case was applied. It was confirmed that the proposed evaluation problem case was applied as a real-time online non-face-to-face evaluation method to effectively evaluate the programming competency of non-major students.

Global Citizenship Education(GCED) and Engineering for Non-Majors Convergence D-SteamRobot(DSR) Educational Model

  • Kibbm Lee;Seok-Jae Moon
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.1
    • /
    • pp.312-319
    • /
    • 2023
  • This study aims to enhance the engineering education for non-majors by incorporating the concept of Global Citizenship Education and addressing the need for education that responds to climate and ecological changes. The study uses robot programming as a tool to foster the development of global citizens. Non-majors often struggle with producing more than just motionless forms or solid productions, due to a lack of understanding of mechanisms and coding. The study proposes the use of the Convergence D-SteamRobot (DSR) to address this issue by blending humanities and engineering. This is achieved by presenting problems through books to increase empathy, integrating simple machine mechanisms, and creating prototypes to solve self-defined problems. Through this process, learners determine the SDGs topic they want to solve and learn about the simple mechanical mechanism involved in producing the prototype. The educational model provides a constructivist learning environment that emphasizes empathy and exploration, encourages peer-learning, and improves divergent thinking and problem-solving skills.

Designing an Intelligent Data Coding Curriculum for Non-Software Majors: Centered on the EZMKER Kit as an Educational Resource (SW 비전공자 대상으로 지능형 데이터 코딩 교육과정 설계 : EZMKER kit교구 중심으로)

  • Seoung-Young Jang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.901-910
    • /
    • 2023
  • In universities, programming language-based thinking and software education for non-majors are being implemented to cultivate creative and convergent talent capable of leading the digital convergence era in line with the Fourth Industrial Revolution. However, learners face difficulties in acquiring the unfamiliar syntax and programming languages. The purpose of this study is to propose a software education model to alleviate the challenges faced by non-major students during the learning process. By introducing algorithm techniques and diagram techniques based on programming language thinking and using the EZMKER kit as an instructional model, this study aims to overcome the lack of learning about programming languages and syntax. Consequently, a structured software education model has been designed and implemented as a top-down system learning model.

Contents Analysis of Basic Software Education of Non-majors Students for Problem Solving Ability Improvement - Focus on SW-oriented University in Korea - (문제해결력 향상을 위한 비전공자 소프트웨어 기초교육 내용 분석 - 국내 SW중심대학 중심으로 -)

  • Jang, Eunsill;Kim, Jaehyoun
    • Journal of Internet Computing and Services
    • /
    • v.20 no.4
    • /
    • pp.81-90
    • /
    • 2019
  • Since 2015, the government has been striving to strengthen the software capabilities required for future talent through software-oriented university in Korea. In the university selected as a software-oriented university, basic software education is given to all departments such as humanities, social science, engineering, natural science, arts and the sports within the university in order to foster convergent human resources with different knowledge and software literacy. In this paper, we analyze the contents of basic software education for twenty universities selected as software-oriented universities. As a result of analysis, most of the basic software education which is carried out to the students of the non-majors students was aimed at improvement of problem solving ability centered on computational thinking for future society and improvement of convergence ability based on computer science. It uses block-based educational programming language and text-based advanced programming language to adjust the difficulty of programming contents and contents reflecting characteristics of each major. Problem-based learning, project-based learning, and discussion method were used as the teaching and learning methods for problem solving. In the future, this paper will help to establish the systematic direction for basic software education of non-majors students.

Effectiveness analysis based on computational thinking of a computing course for non-computer majors (컴퓨팅 사고력 관점에서 본 컴퓨터 비전공자 대상 교양 컴퓨팅 수업의 효과성 분석 연구)

  • Kim, MinJa;Kim, HyeonCheol
    • The Journal of Korean Association of Computer Education
    • /
    • v.21 no.1
    • /
    • pp.11-21
    • /
    • 2018
  • Given the background of so-called 'the 4th industrial revolution', universities practice computing education for non-majors to equip them with computational thinking(CT). Universities apply different courses but researches analyzing effectiveness of the courses based on CT are limited. This research is conducted to understand a computing course for non-majors is effective in terms of CT. A CT based evaluation framework is designed referring to AP Computer Science Principles. Questionnaires are developed based on the framework and applied to the course participants. As results, students' post scores are significantly higher than pre scores. In addition, there are significant differences in pre-test scores by major category while there is no difference in post-test. Humanity & social science group showed the largest difference between pre and post results with science & engineering and computer in order. In sum, it is found that this course is effective to facilitate students abilities in terms of CT, particularly for the non-computer majors.

Effectiveness Analysis of Programming Education for College of Education Student Based on Information Processing Theory Applied DEVS Methodology (DEVS 형식론 기반의 정보처리학습이론을 적용한 사범대생 대상 프로그래밍교육의 효과성 분석)

  • Han, Youngshin
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.9
    • /
    • pp.1191-1200
    • /
    • 2020
  • In this paper, we proposed DEVS based programming education model that based on the cognitive information processing theory, not a grammatical programming education, and studied effectiveness analysis using computer thinking patterns. By creating a small range of patterns in the grammar which underlies the programming language and solving various examples through combinations, this paper shows an education method to develop problem-solving skills based on algorithmic thinking. The purpose of this study is to facilitate non-majors learn programming languages and understand patterned program structures when writing programs by patterning of control statements which the most important in learning programming.

Analysis of the Effects of Learners' Visual Literacy and Thinking Patterns on Program Understanding and Writing in Basic Coding Education for Computer Non-majors (컴퓨터 비전공자를 위한 기초 코딩 교육에서 학습자의 시각적 문해력과 사고 유형이 프로그램 이해와 작성에 미치는 영향 분석)

  • Park, Chan Jung;Hyun, Jung Suk
    • The Journal of Korean Association of Computer Education
    • /
    • v.23 no.2
    • /
    • pp.1-11
    • /
    • 2020
  • As software and artificial intelligence education became more and more important, in December 2019, the Ministry of Science and ICT announced plans to expand software and AI education to mandatory education in elementary and secondary schools by 2022. In addition to elementary and secondary schools, most universities are actively engaged in software education for computer non-majors, but research on coding education for computer non-majors is insufficient. The purpose of this paper is to find an efficient teaching and learning method for coding education for computer non-majors. Nowadays, college students, called Millennial and Generation Z, prefer visual information and are familiar with computers as digital natives. Based on these characteristics, this study examined the visual literacy and thinking styles of college students and then examined whether the students' visual literacy and thinking styles influenced coding-based problem solving in coding subjects. Based on this, this paper proposes an alternative to do programming education more efficiently for students who are new to coding.

A Study on Teacher-learner Feedback Method for Effective Software Project Execution of Non-Computer Major Students (컴퓨터 비전공자의 효과적인 소프트웨어 프로젝트 수행을 위한 교수자-학습자 피드백 방법에 관한 연구)

  • Jung, Hye-Wuk
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.211-217
    • /
    • 2019
  • The term project executed at the university is a learner-centered learning method in which students select their topics, draw up their plans, and produce results by themselves based on the content they have learned during the semester. Through the term-end project of the subjects relating software, students learn various techniques for the programming language and produce the outcomes of their project by the creative program development process. However, non-computer majors who take software course as liberal arts subjects have difficulty in understanding the programming language, so it is necessary to provide feedback from their professor for encouraging students in carrying out their projects smoothly. Therefore, a feedback method by the discussions between a professor and learners that can be applied to the term-end project of programming subject for the non-computer majors is proposed. The proposed method was apply to the actual term-end projects and the meaningful results were confirmed through the analysis of the project processes and outcomes.

Effects of Programming Education using Visual Literacy: Focus on Arts Major (시각적 문해력을 활용한 프로그래밍 교육의 효과 : 예술계열 중심으로)

  • Su-Young Pi;Hyun-Sook Son
    • Journal of Practical Engineering Education
    • /
    • v.16 no.2
    • /
    • pp.105-114
    • /
    • 2024
  • Recently, with an emphasis on software proficiency, universities are providing software education to all students regardless of their majors. However, non-majors often lack motivation for software education and perceive the unfamiliar learning content as more challenging. To address this issue, tailored software education according to the learners' characteristics is essential. Art students, for instance, with their strong visual comprehension and expressive abilities, can benefit from utilizing visual literacy to enhance the effectiveness of programming education. In this study, we propose decomposing everyday problems into flowcharts and pseudocode to construct procedural and visual images. Using the educational programming language PlayBot, we aim to analyze the effectiveness of teaching by coding to solve problems. Through this approach, students are expected to grasp programming concepts, understand problem-solving processes through computational thinking, and acquire skills to apply programming in their respective fields.