• Title/Summary/Keyword: programmable

Search Result 1,448, Processing Time 0.028 seconds

SOI CMOS Miniaturized Tunable Bandpass Filter with Two Transmission zeros for High Power Application (고 출력 응용을 위한 2개의 전송영점을 가지는 최소화된 SOI CMOS 가변 대역 통과 여파기)

  • Im, Dokyung;Im, Donggu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.174-179
    • /
    • 2013
  • This paper presents a capacitor loaded tunable bandpass chip filter using multiple split ring resonators (MSRRs) with two transmission zeros. To obtain high selectivity and minimize the chip size, asymmetric feed lines are adopted to make a pair of transmission zeros located on each side of passband. Compared with conventional filters using cross-coupling or source-load coupling techniques, the proposed filter uses only two resonators to achieve high selectivity through a pair of transmission zeros. In order to optimize selectivity and sensitivity (insertion loss) of the filter, the effect of the position of asymmetric feed line on transmission zeros and insertion loss is analyzed. The SOI-CMOS switched capacitor composed of metal-insulator-metal (MIM) capacitor and stacked-FETs is loaded at outer rings of MSRRs to tune passband frequency and handle high power signal up to +30 dBm. By turning on or off the gate of the transistors, the passband frequency can be shifted from 4GH to 5GHz. The proposed on-chip filter is implemented in 0.18-${\mu}m$ SOI CMOS technology that makes it possible to integrate high-Q passive devices and stacked-FETs. The designed filter shows miniaturized size of only $4mm{\times}2mm$ (i.e., $0.177{\lambda}g{\times}0.088{\lambda}g$), where ${\lambda}g$ denotes the guided wave length of the $50{\Omega}$ microstrip line at center frequency. The measured insertion loss (S21)is about 5.1dB and 6.9dB at 5.4GHz and 4.5GHz, respectively. The designed filter shows out-of-band rejection greater than 20dB at 500MHz offset from center frequency.

Real-Time Fixed Pattern Noise Suppression using Hardware Neural Networks in Infrared Images Based on DSP & FPGA (DSP & FPGA 기반의 적외선 영상에서 하드웨어 뉴럴 네트워크를 이용한 실시간 고정패턴잡음 제어)

  • Park, Chang-Han;Han, Jung-Soo;Chun, Seung-Woo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.4
    • /
    • pp.94-101
    • /
    • 2009
  • In this paper, we propose design of hardware based on a high speed digital signal processor (DSP) and a field programmable gate array (FPGA) for real-time suppression of fixed pattern noise (FPN) using hardware neural networks (HNN) in cooled infrared focal plane array (IRFPA) imaging system FPN appears a limited operation by temperature in observable images which applies to non-uniformity correction for infrared detector. These have very important problems because it happen serious problem for other applications as well as degradation for image quality in our system Signal processing architecture for our system operates reference gain and offset values using three tables for low, normal, and high temperatures. Proposed method creates virtual tables to separate for overlapping region in three offset tables. We also choose an optimum tenn of temperature which controls weighted values of HNN using mean values of pixels in three regions. This operates gain and offset tables for low, normal, and high temperatures from mean values of pixels and it recursively don't have to do an offset compensation in operation of our system Based on experimental results, proposed method showed improved quality of image which suppressed FPN by change of temperature distribution from an observational image in real-time system.

Design of a Wide-Frequency-Range, Low-Power Transceiver with Automatic Impedance-Matching Calibration for TV-White-Space Application

  • Lee, DongSoo;Lee, Juri;Park, Hyung-Gu;Choi, JinWook;Park, SangHyeon;Kim, InSeong;Pu, YoungGun;Kim, JaeYoung;Hwang, Keum Cheol;Yang, Youngoo;Seo, Munkyo;Lee, Kang-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.1
    • /
    • pp.126-142
    • /
    • 2016
  • This paper presents a wide-frequency-range, low-power transceiver with an automatic impedance-matching calibration for TV-white-space (TVWS) application. The wide-range automatic impedance matching calibration (AIMC) is proposed for the Drive Amplifier (DA) and LNA. The optimal $S_{22}$ and $S_{11}$ matching capacitances are selected in the DA and LNA, respectively. Also, the Single Pole Double Throw (SPDT) switch is integrated to share the antenna and matching network between the transmitter and receiver, thereby minimizing the systemic cost. An N-path filter is proposed to reject the large interferers in the TVWS frequency band. The current-driven mixer with a 25% duty LO generator is designed to achieve the high-gain and low-noise figures; also, the frequency synthesizer is designed to generate the wide-range LO signals, and it is used to implement the FSK modulation with a programmable loop bandwidth for multi-rate communication. The TVWS transceiver is implemented in $0.13{\mu}m$, 1-poly, 6-metal CMOS technology. The die area of the transceiver is $4mm{\times}3mm$. The power consumption levels of the transmitter and receiver are 64.35 mW and 39.8 mW, respectively, when the output-power level of the transmitter is +10 dBm at a supply voltage of 3.3 V. The phase noise of the PLL output at Band 2 is -128.3 dBc/Hz with a 1 MHz offset.

Design of a 2.5V 300MHz 80dB CMOS VGA Using a New Variable Degeneration Resistor (새로운 가변 Degeneration 저항을 사용한 2.5V 300MHz 80dB CMOS VGA 설계)

  • 권덕기;문요섭;김거성;박종태;유종근
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.9
    • /
    • pp.673-684
    • /
    • 2003
  • A degenerated differential pair has been widely used as a standard topology for digitally programmable CMOS VGAs. A variable degeneration resistor has been implemented using a resistor string or R-2R ladder with MOSFET switches. However, in the VGAs using these conventional methods, low-voltage and high-speed operation is very hard to achieve due to the dc voltage drop over the degeneration resistor. To overcome this problem a new variable degeneration resistor is proposed where the dc voltage drop is almost removed. Using the proposed gain control scheme, a low-voltage and high-speed CMOS VGA is designed. HSPICE simulation results using a 0.25${\mu}{\textrm}{m}$ CMOS process parameters show that the designed VGA provides a 3dB bandwidth of 360MHz and a 80dB gain control range in 2dB step. Gain errors are less than 0.4dB at 200MHz and less than l.4dB at 300MHz. The designed circuit consumes 10.8mA from a 2.5V supply and its die area is 1190${\mu}{\textrm}{m}$${\times}$360${\mu}{\textrm}{m}$.

An FPGA Implementation of the Synthesis Filter for MPEG-1 Audio Layer III by a Distributed Arithmetic Lookup Table (분산산술연산방식을 이용한 MPEG-1 오디오 계층 3 합성필터의 FPGA 군현)

  • Koh Sung-Shik;Choi Hyun-Yong;Kim Jong-Bin;Ku Dae-Sung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.8
    • /
    • pp.554-561
    • /
    • 2004
  • As the technologies of semiconductor and multimedia communication have been improved. the high-quality video and the multi-channel audio have been highlighted. MPEG Audio Layer 3 decoder has been implemented as a Processor using a standard. Since the synthesis filter of MPEG-1 Audio Layer 3 decoder requires the most outstanding operation in the entire decoder. the synthesis filter that can reduce the amount of operation is needed for the design of the high-speed processor. Therefore, in this paper, the synthesis filter. the most important part of MPEG Audio, is materialized in FPGA using the method of DAULT (distributed arithemetic look-up table). For the design of high-speed synthesis filter, the DAULT method is used instead of a multiplier and a Pipeline structure is used. The Performance improvement by 30% is obtained by additionally making the result of multiplication of data with cosine function into the table. All hardware design of this Paper are described using VHDL (VHIC Hardware Description Language) Active-HDL 6.1 of ALDEC is used for VHDL simulation and Synplify Pro 7.2V is used for Model-sim and synthesis. The corresponding library is materialized by XC4013E and XC4020EX. XC4052XL of XILINX and XACT M1.4 is used for P&R tool. The materialized processor operates from 20MHz to 70MHz.

FPGA Implementation of a Grant Distribution Algorithm for the MAC in the ATM-PON (ATM-PON에서 MAC을 위한 승인분배 알고리즘의 FPGA 구현)

  • Kim, Tae-Min;Chung, Hae;Shin, Gun-Soon;Kim, Jin-Hee
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.10
    • /
    • pp.1-9
    • /
    • 2001
  • The MAC (Medium Access Control) protocol is needed for the OLT(Optical Line Termination) to allocate bandwidth to ONUs(Optical Network Units) and ONTs(Optical Network Terminations) dynamically in the ATM PON(Passive Optical Network). With the protocol, the OLT gathers ONUs' informations and provides grants efficiently to each ONU. Two important functions of the MAC protocol is the grant request procedure and the grant distribution algrithm. The latter has the greatest arithmetic portion in the TC(Transmission Convergence) module, occupies a relatively large portion of the overall chip area, has often been the limiting factor in terms of speed, and should be designed to guarantee the quality of service for various traffics. In this paper, we implement the MAC with the FPGA which can allocate grants dynamically according to the queue length information and the number of active ONUs and distribute grants uniformly to minimize the cell delay variation for each ONU. The structure of the MAC scheduler for the dynamic bandwidth assignment has a programmable look-up table. Also, it has a simple structure, the less chip area, and the lower delay time.

  • PDF

FPGA Mapping Incorporated with Multiplexer Tree Synthesis (멀티플렉서 트리 합성이 통합된 FPGA 매핑)

  • Kim, Kyosun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.37-47
    • /
    • 2016
  • The practical constraints on the commercial FPGAs which contain dedicated wide function multiplexers in their slice structure are incorporated with one of the most advanced FPGA mapping algorithms based on the AIG (And-Inverter Graph), one of the best logic representations in academia. As the first step of the mapping process, cuts are enumerated as intermediate structures. And then, the cuts which can be mapped to the multiplexers are recognized. Without any increased complexity, the delay and area of multiplexers as well as LUTs are calculated after checking the requirements for the tree construction such as symmetry and depth limit against dynamically changing mapping of neighboring nodes. Besides, the root positions of multiplexer trees are identified from the RTL code, and annotated to the AIG as AOs (Auxiliary Outputs). A new AIG embedding the multiplexer tree structures which are intentionally synthesized by Shannon expansion at the AOs, is overlapped with the optimized AIG. The lossless synthesis technique which employs FRAIG (Functionally Reduced AIG) is applied to this approach. The proposed approach and techniques are validated by implementing and applying them to two RISC processor examples, which yielded 13~30% area reduction, and up to 32% delay reduction. The research will be extended to take into account the constraints on the dedicated hardware for carry chains.

Implementation of a QoS routing path control based on KREONET OpenFlow Network Test-bed (KREONET OpenFlow 네트워크 테스트베드 기반의 QoS 라우팅 경로 제어 구현)

  • Kim, Seung-Ju;Min, Seok-Hong;Kim, Byung-Chul;Lee, Jae-Yong;Hong, Won-Taek
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.9
    • /
    • pp.35-46
    • /
    • 2011
  • Future Internet should support more efficient mobility management, flexible traffic engineering and various emerging new services. So, lots of traffic engineering techniques have been suggested and developed, but it's impossible to apply them on the current running commercial Internet. To overcome this problem, OpenFlow protocol was proposed as a technique to control network equipments using network controller with various networking applications. It is a software defined network, so researchers can verify their own traffic engineering techniques by applying them on the controller. In addition, for high-speed packet processing in the OpenFlow network, programmable NetFPGA card with four 1G-interfaces and commercial Procurve OpenFlow switches can be used. In this paper, we implement an OpenFlow test-bed using hardware-accelerated NetFPGA cards and Procurve switches on the KREONET, and implement CSPF (Constraint-based Shortest Path First) algorithm, which is one of popular QoS routing algorithms, and apply it on the large-scale testbed to verify performance and efficiency of multimedia traffic engineering scheme in Future Internet.

Development of the Automatic Feeder for Growing-finishing Pigs (육성비육돈용 자동급이기 사료공급장치 개발에 관한 연구)

  • Yoo, Y.H.;Song, J.I.;Choi, H.C.;Kim, J.H.;Park, K.H.;Kang, H.S.;Chang, D.I.
    • Journal of Animal Environmental Science
    • /
    • v.15 no.3
    • /
    • pp.241-250
    • /
    • 2009
  • This study was conducted to develop an prototype automatic feeder (AF) for growing-finishing pigs. The main components of AF were a feed storage hopper, a feeding motor, a feed agitator, a control box and a programmable IC, which were controlled by a personal computer. The powder type feed transfer rate of AF was average $9.83{\pm}0.4\;g\;s^{-1}$. In feeding test, growing pigs (Landrace) of about 43 kg live weight were used in the study, and was fed over a 6 weeks in pens with solid concrete floors. For feeding trials with AF, the operation time of the feeding motor was set to 2, 3, 4, 5, and 6 seconds per feeding. Pigs frequently used AF from 05:00 to 11:00 and from 11:00 to 17:00 without relationship to the operation time of the feeding motor. The AF operation time of the feeding motor to minimize feed loss was between 2 and 4 seconds. Pigs fed with AF had same or slightly higher average daily gam (0.8~0.9 kg) than that with a commercial feeder, and average daily feed intake (2.76~2.93 kg) and feed conversion ratio (3.10~3.66) of pigs fed with AF were same or lower than those with the commercial feeder except the operation time of the feeding motor set to 6 seconds. As a result, AF would help to use and improve the productivity of growing-finishing pigs.

  • PDF

Implementation of the Digital Current Control System for an Induction Motor Using FPGA (FPGA를 이용한 유도 전동기의 디지털 전류 제어 시스템 구현)

  • Yang, Oh
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.11
    • /
    • pp.21-30
    • /
    • 1998
  • In this paper, a digital current control system using a FPGA(Field Programmable Gate Array) was implemented, and the system was applied to an induction motor widely used as an industrial driving machine. The FPGA designed by VHDL(VHSIC Hardware Description Language) consists of a PWM(Pulse Width Modulation) generation block, a PWM protection block, a speed measuring block, a watch dog timer block, an interrupt control block, a decoder logic block, a wait control block and digital input and output blocks respectively. Dedicated clock inputs on the FPGA were used for high-speed execution, and an up-down counter and a latch block were designed in parallel, in order that the triangle wave could be operated at 40 MHz clock. When triangle wave is compared with many registers respectively, gate delay occurs from excessive fan-outs. To reduce the delay, two triangle wave registers were implemented in parallel. Amplitude and frequency of the triangle wave, and dead time of PWM could be changed by software. This FPGA was synthesized by pASIC 2SpDE and Synplify-Lite synthesis tool of Quick Logic company. The final simulation for worst cases was successfully performed under a Verilog HDL simulation environment. And the FPGA programmed for an 84 pin PLCC package was applied to digital current control system for 3-phase induction motor. The digital current control system of the 3 phase induction motor was configured using the DSP(TMS320C31-40 MHz), FPGA, A/D converter and Hall CT etc., and experimental results showed the effectiveness of the digital current control system.

  • PDF