• Title/Summary/Keyword: product gas

Search Result 1,017, Processing Time 0.029 seconds

석유제품 혼합판매 활성화 방안

  • Yun, Won-Cheol;Son, Yang-Hun
    • Environmental and Resource Economics Review
    • /
    • v.21 no.2
    • /
    • pp.417-439
    • /
    • 2012
  • Recently, the Korean government has announced a stream of countermeasures for stabilizing petroleum product prices. Especially, the Fair Trade Commission proposed a transaction guideline focusing on the petroleum-product blending. The main purpose of this study is to suggest the policy options to induce and promote petroleum-product blending. For this purpose, this paper describes the changes in domestic systems related to petroleum-product blending. In addition, it discusses the major topics for inducing and promoting petroleum-product blending. It would be prerequisites to alleviate or demolish the requirements of separate storage by supplier and exclusive dealing. These options would result in the price decreases at the stages of refinery and gas station. Due to the legal constraint of law revision, it should be also considered to increase more gas stations in wholesale marts and self or franchised independent gas stations.

  • PDF

The Effects of Ownership, Regulation and Marked Structure on the Pricing: Evidence from the U.S. Electricity and Natural Gas Industries (소유구조, 규제 및 시장구조가 가격에 미치는 영향에 관한 연구: 미국의 전력산업과 천연가스산업을 중심으로)

  • Kim, Dae-Wook
    • Environmental and Resource Economics Review
    • /
    • v.17 no.4
    • /
    • pp.751-774
    • /
    • 2008
  • In this paper, we examine the institutional prices differences in the electricity and natural gas industries using unbalanced panel data from 1999 to 2001. The changing market structures following deregulation in both markets allow us to examine the institutional prices differences by ownership type, market structure and merger activities. Estimating the reduced form, after controlling both intrinsic characteristic (marginal costs) and external factors (demand), allows us to identify the extent to which specific factors are correlated with the price. Furthermore it allows us to identify systematic institutional price differences in both electricity and natural gas markets. Our estimation results suggest that the private firms in electricity markets are associated with higher prices than public firms after controlling for demand and cost. We further find that dual-product firms in the natural gas industry and the electricity industry are associated with lower rates than single product firms. These results provide a weak evidence of economies of scope in the dual-product firms. Our results finally suggest that merger activities in natural gas markets are associated with higher rates.

  • PDF

A Study on Product Liability Response System of Chemical Products by Using Failure Mode and Effect Analysis (FMEA기법을 이용한 화학제품의 PL 대응체계 연구)

  • Ko J. W.;Yoo J. H.;Kim D. H
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.4 s.21
    • /
    • pp.30-35
    • /
    • 2003
  • Product liability(PL) law imposes the liability on manufacturer or wholesaler when the product defects cause harm to consumers of the products or any other parties in their lives, bodies, or properties. In Korea, the law of product liability was enforced in July 2002. In this study the Product Liability Response System of chemical products was developed by using Failure Mode and Effect Analysis(FMEA). For a case study peformed for N,N-Dimethylethylamine. First, product information was gathered through Material Safety Data Sheet(MSDS)and which considered as an instruction manual of chemical product. And an effect caused by product defects is analyzed by FMEA to get Risk Priority Number(RPN) which is calculated by multiplying of severity, occurrence, and detection of the defects. Then hazard was estimated quantitatively by RPN.

  • PDF

Characterization of Product Gas and Residues from Arc Cracking of Waste Lubricating Oil (폐윤활유의 아크 열분해 생성물 및 잔류물 특성 연구)

  • 김인태;김정국;송금주;서용칠;김준형
    • Resources Recycling
    • /
    • v.8 no.5
    • /
    • pp.34-43
    • /
    • 1999
  • An elecmc arc cracking reaclor is developed for the productiol~o f ieusuble fuel gas by the thennal destruction of waste oil. The churaclensucs of product gas and ~esiduesf rom arc crachng of wnste lubr~cat~nogil are sludird. Thc product gas is mainly coruposcd of hydrogen 135-4076), acetylene (13-4076), ethylene 13-476) and olher hgdrocnrbons. The contenr of carbon monomde, one or the main product in a conventional low-temperature Lhennal cracking umt, 1s very slnvll in lhis atc cracking expcnmcnt. Total calocctic wlue of product gas shows 11,000-13.000 kcizlkg, which is hiph cnough to use as a ~ L I I I Cga~ s . and the concentralions oC loxic gases arc well below the rcguliltury emission critena The GCIMS analysis of llquld-phase residues shows that the high rnalccular welgllt hydrocilrbons in the waste oil arc cracked into the low malecular weight hydrocarbons snd hydroem,. The dehydrogcnntion is found lo be Lhe main cracking rcacuon due lo the high temperalure ~ ~ ~ d ubcyc edle ctric arc. The average parucle size of soot as the solid-phase residue is 10 3 wm, and the conlents of cabon a ~ hdea vy metals are abovc 60% and under 0.01 ppm, respecttrely. Thc utllizvtion or sool, as industl-id1 rcsource seems lo he reasible aIter refimng.

  • PDF

Gasification of Crude Glycerin for Liquid Fuel Production (액체연료 생산을 위한 폐글리세린의 가스화 기술 개발)

  • Yoon, Sang-Jun;Ra, Ho-Won;Lee, See-Hoon;Choi, Young-Chan;Lee, Jae-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.451-454
    • /
    • 2009
  • Production and application of biodiesel are expected to grow steadily in the coming years and thus output of its by-product, crude glycerin, will accordingly increase as well. In the present study, gasification of biodiesel by-product as a renewable energy was performed in an entrained flow gasifier to investigate the gasification performance with the operating conditions. Crude glycerin shows a high heating value of 6,000 kcal/kg and low ash and sulphur content. Gasification was conducted in a temperature range of $950\;{\sim}\;1500\;^{\circ}C$. The variation of syngas composition with excess air ratio of 0.17 ~ 0.7 for air or oxygen as a gasification agent was investigated. From the results, syngas heating value, carbon conversion and cold gas efficiency of more than $2500\;kcal/Nm^3$, 95% and 65% were achieved, respectively. The temperature dependency of syngas composition, carbon conversion, and cold gas efficiency shows a similar tendency to excess air ratio at the temperature corresponding to the excess air ratio. The $H_2/CO$ ratio of the product gas was varied from 1.25 to 0.7 with the excess air ratio and this gas composition was favorable for DME synthesis. The optimum excess air ratio for gasification of biodiesel by-product was evaluated to be an approximately 0.35 to 0.4. The present results indicate that crude glycerin can be utilized as a feedstock for gasification to make syngas.

  • PDF

Effect of gas hydrate process on energy saving for reverse osmosis process in seawater desalination plant (해수담수화플랜트에서 가스 하이드레이트 공정 도입을 통한 역삼투 공정의 에너지 절감 효과)

  • Kim, Suhan;Lim, Jun-Heok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.771-778
    • /
    • 2013
  • Gas hydrate (GH) process is a new desalination technology, where GH is a non- stoichiometric crystalline inclusion compounds formed by water and a number of gas molecules. Seawater GH is produced in a low temperature and a high pressure condition and they are separated from the concentrated seawater. The drawback of the GH process so far is that salt contents contained in its product does not meet the fresh water quality standard. This means that the GH process is not a standalone process for seawater desalination and it needs the help of other desalting process like reverse osmosis (RO). The objective of this study is to investigate the effect of GH process on energy saving for RO process in seawater desalination. The GH product water quality data, which were obtained from a literature, were used as input data for RO process simulation. The simulation results show that the energy saving effect by the GH process is in a range of 68 % to 81 %, which increases as the salt removal efficiency of the GH process increases. Boron (B) and total dissolved solids (TDS) concentrations of the final product of the hybrid process of GH and RO were also investigated through the RO process simulation to find relavant salt rejection efficiency of the GH process. In conclusion, the salt rejection efficiency of the GH process should exceed at least 78% in order to meet the product water quality standards and to increase the energy saving effect.

Gas cooling for optimization of mold cooling (금형 냉각 최적화를 위한 기체 보조 냉각)

  • Lim, Dong-Wook;Kim, Ji-Hun;Shin, Bong-Cheol
    • Design & Manufacturing
    • /
    • v.12 no.1
    • /
    • pp.18-25
    • /
    • 2018
  • Both injection and injection molding dies have evolved into advanced technology. Product quality is also evolving day after day. Therefore, the conditions of the injection mold and the injection conditions are becoming important. In order to improve the quality of the product, the Hardware part of the mold has developed as an advanced technology, and the Software part has also developed with advanced technology. This study deals with the cooling part, which is part of the hardware. In addition to fluid cooling, which is commonly used in the industry, by using gas cooling identify the phenomena that appear on the surface of the product and the critical point strain of the product to find the optimal cooling. Electronic parts and automobile parts whose surface condition is important, the cooling process is important to such a degree that they are divided with good products and defective products according to the cooling process at the time of injection. By controlling this important cooling and reducing the injection time with additional cooling, the product quality can be increased to the highest production efficiency. In addition, high efficiency can be achieved without additional investment costs. This study was conducted to apply these various advantages in the field.

An Experimental Study on Anaerobic Acidogenesis Product Distributions (혐기성 산생성상에 있어서 온도 및 pH조건에 따른 생성물질의 분포상태)

  • Ahn, Ho-Hyeoug;Kim, Dong-Min
    • Journal of environmental and Sanitary engineering
    • /
    • v.4 no.2 s.7
    • /
    • pp.91-99
    • /
    • 1989
  • An anaerobic acidogenic fermentation experiment was carried out in order to investigate the distribution of volatile acid products and gas generations with varing temperatures and pH values. The experiment was carried out using $1\%$ glucose as substrate and a pair of 3.5 liter vessle as bench scale batch reactors. The reactors were operated for 7 days at 25, 30 and $35^{\circ}C$ and at pH values of 4.0, 4.5, 5.0, 5.5 and 6.0 at each temperature conditions. Major products at all experiment pH's at $35^{\circ}C$ were acetic acids and butyric acids which together composed around $90^{\circ}F$ of total product acids. At higher pH values at $35^{\circ}C$, propionic acid reached around $10\%$. At all experiment conditions, 52 to $55\%$ of generated gases comprised of hydrogen gas and 45 to $48\%$ of carbon dioxide. With temperature increase from 25 to $35^{\circ}C$, the production rate of acetic acid increased 2.9 fold, butyric acid 22 fold, hydrogen gas 2.0 fold and carbon dioxide gas 2.3 fold. Optimum reaction conditions for highest production of acetic acid and hydrogen gas was determined to be pH 5.5 at $35^{\circ}C$.

  • PDF

Precipitation of Manganese in the p-Xylene Oxidation with Oxygen-Enriched Gas in Liquid Phase

  • Jhung, Sung-Hwa;Park, Youn-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.369-373
    • /
    • 2002
  • The liquid phase oxidation of p-xylene has been carried out with oxygen-enriched gas, and the manganese component was precipitated probably via over-oxidation to $Mn^{4+}$. The precipitation increased with rising oxygen concentration in the reaction gas and occurred mainly in the later part of the oxidation. The activity of the reaction decreased, and the blackening of the product and side reactions to carbon dioxide increased with the degree of precipitation. Precipitation can be decreased with the addition of metal ions, such as cerium, chromium and iron.

Experimental Study on PSA Process for High Purity CH4 Recovery from Biogas (바이오가스로부터 고순도 CH4 회수를 위한 PSA 공정의 실험적 연구)

  • Kim, Young-Jun;Lee, Jong-Gyu;Lee, Jong-Yeon;Kang, Yong-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.4
    • /
    • pp.281-286
    • /
    • 2011
  • The objective of this study is to optimize the four-bed six-step pressure swing adsorption(PSA) process for high purity $CH_4$ recovery from the biogas. The effects of P/F(purge to feed) ratio and cycle time on the process performance were evaluated. The cyclic steady-states of PSA process were reached after 12 cycles. The purity and recovery rate of product gas, pressure and temperature changes were constant as the cycle repeated. It was shown that the P/F ratio gave significant effect on the product recovery rate by increasing the amount of purge gas in purge and regeneration step. The optimal P/F ratio was found to be 0.08. As the cycle time increased, the product purity decreased by increasing the feed gas flow rate. It was found that the optimal operating conditions were P/F ratio of 0.08 and total cycle time of 1,440 seconds with the purity of 97%.