• Title/Summary/Keyword: processing.

Search Result 69,871, Processing Time 0.083 seconds

Quality of Radiomics Research on Brain Metastasis: A Roadmap to Promote Clinical Translation

  • Chae Jung Park;Yae Won Park;Sung Soo Ahn;Dain Kim;Eui Hyun Kim;Seok-Gu Kang;Jong Hee Chang;Se Hoon Kim;Seung-Koo Lee
    • Korean Journal of Radiology
    • /
    • v.23 no.1
    • /
    • pp.77-88
    • /
    • 2022
  • Objective: Our study aimed to evaluate the quality of radiomics studies on brain metastases based on the radiomics quality score (RQS), Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) checklist, and the Image Biomarker Standardization Initiative (IBSI) guidelines. Materials and Methods: PubMed MEDLINE, and EMBASE were searched for articles on radiomics for evaluating brain metastases, published until February 2021. Of the 572 articles, 29 relevant original research articles were included and evaluated according to the RQS, TRIPOD checklist, and IBSI guidelines. Results: External validation was performed in only three studies (10.3%). The median RQS was 3.0 (range, -6 to 12), with a low basic adherence rate of 50.0%. The adherence rate was low in comparison to the "gold standard" (10.3%), stating the potential clinical utility (10.3%), performing the cut-off analysis (3.4%), reporting calibration statistics (6.9%), and providing open science and data (3.4%). None of the studies involved test-retest or phantom studies, prospective studies, or cost-effectiveness analyses. The overall rate of adherence to the TRIPOD checklist was 60.3% and low for reporting title (3.4%), blind assessment of outcome (0%), description of the handling of missing data (0%), and presentation of the full prediction model (0%). The majority of studies lacked pre-processing steps, with bias-field correction, isovoxel resampling, skull stripping, and gray-level discretization performed in only six (20.7%), nine (31.0%), four (3.8%), and four (13.8%) studies, respectively. Conclusion: The overall scientific and reporting quality of radiomics studies on brain metastases published during the study period was insufficient. Radiomics studies should adhere to the RQS, TRIPOD, and IBSI guidelines to facilitate the translation of radiomics into the clinical field.

Impact of Photon-Counting Detector Computed Tomography on Image Quality and Radiation Dose in Patients With Multiple Myeloma

  • Alexander Rau;Jakob Neubauer;Laetitia Taleb;Thomas Stein;Till Schuermann;Stephan Rau;Sebastian Faby;Sina Wenger;Monika Engelhardt;Fabian Bamberg;Jakob Weiss
    • Korean Journal of Radiology
    • /
    • v.24 no.10
    • /
    • pp.1006-1016
    • /
    • 2023
  • Objective: Computed tomography (CT) is an established method for the diagnosis, staging, and treatment of multiple myeloma. Here, we investigated the potential of photon-counting detector computed tomography (PCD-CT) in terms of image quality, diagnostic confidence, and radiation dose compared with energy-integrating detector CT (EID-CT). Materials and Methods: In this prospective study, patients with known multiple myeloma underwent clinically indicated whole-body PCD-CT. The image quality of PCD-CT was assessed qualitatively by three independent radiologists for overall image quality, edge sharpness, image noise, lesion conspicuity, and diagnostic confidence using a 5-point Likert scale (5 = excellent), and quantitatively for signal homogeneity using the coefficient of variation (CV) of Hounsfield Units (HU) values and modulation transfer function (MTF) via the full width at half maximum (FWHM) in the frequency space. The results were compared with those of the current clinical standard EID-CT protocols as controls. Additionally, the radiation dose (CTDIvol) was determined. Results: We enrolled 35 patients with multiple myeloma (mean age 69.8 ± 9.1 years; 18 [51%] males). Qualitative image analysis revealed superior scores (median [interquartile range]) for PCD-CT regarding overall image quality (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), edge sharpness (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), image noise (4.0 [4.0-4.0] vs. 3.0 [3.0-4.0]), lesion conspicuity (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), and diagnostic confidence (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]) compared with EID-CT (P ≤ 0.004). In quantitative image analyses, PCD-CT compared with EID-CT revealed a substantially lower FWHM (2.89 vs. 25.68 cy/pixel) and a significantly more homogeneous signal (mean CV ± standard deviation [SD], 0.99 ± 0.65 vs. 1.66 ± 0.5; P < 0.001) at a significantly lower radiation dose (mean CTDIvol ± SD, 3.33 ± 0.82 vs. 7.19 ± 3.57 mGy; P < 0.001). Conclusion: Whole-body PCD-CT provides significantly higher subjective and objective image quality at significantly reduced radiation doses than the current clinical standard EID-CT protocols, along with readily available multi-spectral data, facilitating the potential for further advanced post-processing.

Application Development for Text Mining: KoALA (텍스트 마이닝 통합 애플리케이션 개발: KoALA)

  • Byeong-Jin Jeon;Yoon-Jin Choi;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.21 no.2
    • /
    • pp.117-137
    • /
    • 2019
  • In the Big Data era, data science has become popular with the production of numerous data in various domains, and the power of data has become a competitive power. There is a growing interest in unstructured data, which accounts for more than 80% of the world's data. Along with the everyday use of social media, most of the unstructured data is in the form of text data and plays an important role in various areas such as marketing, finance, and distribution. However, text mining using social media is difficult to access and difficult to use compared to data mining using numerical data. Thus, this study aims to develop Korean Natural Language Application (KoALA) as an integrated application for easy and handy social media text mining without relying on programming language or high-level hardware or solution. KoALA is a specialized application for social media text mining. It is an integrated application that can analyze both Korean and English. KoALA handles the entire process from data collection to preprocessing, analysis and visualization. This paper describes the process of designing, implementing, and applying KoALA applications using the design science methodology. Lastly, we will discuss practical use of KoALA through a block-chain business case. Through this paper, we hope to popularize social media text mining and utilize it for practical and academic use in various domains.

An Efficient CT Image Denoising using WT-GAN Model

  • Hae Chan Jeong;Dong Hoon Lim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.5
    • /
    • pp.21-29
    • /
    • 2024
  • Reducing the radiation dose during CT scanning can lower the risk of radiation exposure, but not only does the image resolution significantly deteriorate, but the effectiveness of diagnosis is reduced due to the generation of noise. Therefore, noise removal from CT images is a very important and essential processing process in the image restoration. Until now, there are limitations in removing only the noise by separating the noise and the original signal in the image area. In this paper, we aim to effectively remove noise from CT images using the wavelet transform-based GAN model, that is, the WT-GAN model in the frequency domain. The GAN model used here generates images with noise removed through a U-Net structured generator and a PatchGAN structured discriminator. To evaluate the performance of the WT-GAN model proposed in this paper, experiments were conducted on CT images damaged by various noises, namely Gaussian noise, Poisson noise, and speckle noise. As a result of the performance experiment, the WT-GAN model is better than the traditional filter, that is, the BM3D filter, as well as the existing deep learning models, such as DnCNN, CDAE model, and U-Net GAN model, in qualitative and quantitative measures, that is, PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity Index Measure) showed excellent results.

Relationship between Abnormal Hyperintensity on T2-Weighted Images Around Developmental Venous Anomalies and Magnetic Susceptibility of Their Collecting Veins: In-Vivo Quantitative Susceptibility Mapping Study

  • Yangsean Choi;Jinhee Jang;Yoonho Nam;Na-Young Shin;Hyun Seok Choi;So-Lyung Jung;Kook-Jin Ahn;Bum-soo Kim
    • Korean Journal of Radiology
    • /
    • v.20 no.4
    • /
    • pp.662-670
    • /
    • 2019
  • Objective: A developmental venous anomaly (DVA) is a vascular malformation of ambiguous clinical significance. We aimed to quantify the susceptibility of draining veins (χvein) in DVA and determine its significance with respect to oxygen metabolism using quantitative susceptibility mapping (QSM). Materials and Methods: Brain magnetic resonance imaging of 27 consecutive patients with incidentally detected DVAs were retrospectively reviewed. Based on the presence of abnormal hyperintensity on T2-weighted images (T2WI) in the brain parenchyma adjacent to DVA, the patients were grouped into edema (E+, n = 9) and non-edema (E-, n = 18) groups. A 3T MR scanner was used to obtain fully flow-compensated gradient echo images for susceptibility-weighted imaging with source images used for QSM processing. The χvein was measured semi-automatically using QSM. The normalized χvein was also estimated. Clinical and MR measurements were compared between the E+ and E- groups using Student's t-test or Mann-Whitney U test. Correlations between the χvein and area of hyperintensity on T2WI and between χvein and diameter of the collecting veins were assessed. The correlation coefficient was also calculated using normalized veins. Results: The DVAs of the E+ group had significantly higher χvein (196.5 ± 27.9 vs. 167.7 ± 33.6, p = 0.036) and larger diameter of the draining veins (p = 0.006), and patients were older (p = 0.006) than those in the E- group. The χvein was also linearly correlated with the hyperintense area on T2WI (r = 0.633, 95% confidence interval 0.333-0.817, p < 0.001). Conclusion: DVAs with abnormal hyperintensity on T2WI have higher susceptibility values for draining veins, indicating an increased oxygen extraction fraction that might be associated with venous congestion.

An Enhanced Water Solubility and Antioxidant Effects of Seed and Pamace of Schisandra chinensis (Turcz.) Baill Formulation by HME (Hot-Melt Extrusion) (HME (Hot-Melt Extrusion)를 이용한 오미자 씨 및 박의 수용성 및 항산화 효과 향상)

  • Eun Ji Go;Min Ji Kang;Min Jun Kim;Jung Dae Lim;Young-Suk Kim;Jong-Min Lim;Min Jeong Cho;Tae Woo Oh;Seokho Kim;Kyeong Tae Kwak;Byeong Yeob Jeon
    • Herbal Formula Science
    • /
    • v.31 no.4
    • /
    • pp.215-230
    • /
    • 2023
  • Objectives : Schisandra chinensis (Turcz.) Baill contains many nutrients and exhibits high physiological functions. It has been shown that Schisandra seed and pamace contains more nutrients than fruits and thus have higher antioxidant efficacy. In this study, seed and pamace of Schisandra chinensis (Turcz.) Baill (SPSC) were treated with hot-melt extrudate (HME) extrusion to produce water-soluble nanoparticles. Methods : SPSC was treated with HME to prepare nanoparticles. In this process, excipients (hydroxypropyl methylcellulose, pullulan, 2-hydroxylpropyl-beta-cyclodextrin, lecithin) were added to prepare a hydrophilic polymer matrix. To compare and analyze the antioxidant effect and schizandrin content, total flavonoid content, total phenol content and ABTS assay were measured. To confirm the effect of increasing the water solubility of the particles, particle size and water solubility index measurements were performed. The molecular of the material was analyzed using Fourier transform infrared spectroscopy (FT-IR). Results : The particle size of HME extrudates decreased, while total phenols, flavonoids, schizandrin, antioxidant effect, and solubility increased. Through FT-IR, it was confirmed that the SPSC and the extrudate exhibit the same chemical properties. In addition, it was confirmed that when extracted with water, it exhibited a higher antioxidant effect than the ethanol extract. Conclusions : HME technology increased the solubility of SPSC, which are processing by-products, and improved their antioxidant effect to a higher degree. It was confirmed that SPSC could be used as an eco-friendly, high value-added material.

Performance Evaluation of Smartphone Camera App with Multi-Focus Shooting and Focus Post-processing Functions (다초점 촬영과 초점후처리 기능을 가진 스마트폰 카메라 앱의 성능평가)

  • Chae-Won Park;Kyung-Mi Kim;Song-Yeon Yoo;Yu-Jin Kim;Kitae Hwang;In-Hwang Jung;Jae-Moon Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.35-40
    • /
    • 2024
  • In this paper, we validate the practicality of the OnePIC app implemented in the previous study by analyzing the execution and storage performance. The OnePIC app is a camera app that allows you to get a photo with a desired focus after taking photos focused on various places. To evaluate performance, we analyzed distance focus shooting time and object focus shooting time in detail. The performance evaluation was measured on actual smartphone. Distance focus shooting time for 5 photos was around 0.84 seconds, the object detection time was around 0.19 seconds regardless of the number of objects and object focus shooting time for 5 photos was around 4.84 seconds. When we compared the size of a single All-in-JPEG file that stores multi-focus photos to the size of the JPEG files stored individually, there was no significant benefit in storage space because the All-in-JPEG file size was subtly reduced. However, All-in-JPEG has the great advantage of managing multi-focus photos. Finally, we conclude that the OnePIC app is practical in terms of shooting time, photo storage size, and management.

Enhanced Crystallinity of Piezoelectric Polymer via Flash Lamp Annealing (플래시광 열처리를 통한 압전 고분자의 결정성 향상 연구)

  • Donghun Lee;Seongmin Jeong;Hak Su Jang;Dongju Ha;Dong Yeol Hyeon;Yu Mi Woo;Changyeon Baek;Min-Ku Lee;Gyoung-Ja Lee;Jung Hwan Park;Kwi-Il Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.427-432
    • /
    • 2024
  • The polymer crystallization process, promoting the formation of ferroelectric β-phase, is essential for developing polyvinylidene fluoride (PVDF)-based high-performance piezoelectric energy harvesters. However, traditional high-temperature annealing is unsuitable for the manufacture of flexible piezoelectric devices due to the thermal damage to plastic components that occurs during the long processing times. In this study, we investigated the feasibility of introducing a flash lamp annealing that can rapidly induce the β-phase in the PVDF layer while avoiding device damage through selective heating. The flash light-irradiated PVDF films achieved a maximum β-phase content of 76.52% under an applied voltage of 300 V and an on-time of 1.5 ms, a higher fraction than that obtained through thermal annealing. The PVDF-based piezoelectric energy harvester with the optimized irradiation condition generates a stable output voltage of 0.23 V and a current of 102 nA under repeated bendings. These results demonstrate that flash lamp annealing can be an effective process for realizing the mass production of PVDF-based flexible electronics.

Proposal for Research Model of High-Function Patrol Robot using Integrated Sensor System (통합 센서 시스템을 이용한 고기능 순찰 로봇의 연구모델 제안)

  • Byeong-Cheon Yoo;Seung-Jung Shin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.77-85
    • /
    • 2024
  • In this dissertation, a we designed and implemented a patrol robot that integrates a thermal imaging camera, speed dome camera, PTZ camera, radar, lidar sensor, and smartphone. This robot has the ability to monitor and respond efficiently even in complex environments, and is especially designed to demonstrate high performance even at night or in low visibility conditions. An orbital movement system was selected for the robot's mobility, and a smartphone-based control system was developed for real-time data processing and decision-making. The combination of various sensors allows the robot to comprehensively perceive the environment and quickly detect hazards. Thermal imaging cameras are used for night surveillance, speed domes and PTZ cameras are used for wide-area monitoring, and radar and LIDAR are used for obstacle detection and avoidance. The smartphone-based control system provides a user-friendly interface. The proposed robot system can be used in various fields such as security, surveillance, and disaster response. Future research should include improving the robot's autonomous patrol algorithm, developing a multi-robot collaboration system, and long-term testing in a real environment. This study is expected to contribute to the development of the field of intelligent surveillance robots.

A Study on Health Impact Assessment and Emissions Reduction System Using AERMOD (AERMOD를 활용한 건강위해성평가 및 배출저감제도에 관한 연구)

  • Seong-Su Park;Duk-Han Kim;Hong-Kwan Kim;Young-Woo Chon
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.93-105
    • /
    • 2024
  • Purpose: This study aims to quantitatively determine the impact on nearby risidents by selecting the amount of chemicals emitted from the workplace among the substances subject to the chemical emission plan and predicting the concentration with the atmospheric diffusion program. Method: The selection of research materials considered half-life, toxicity, and the presence or absence of available monitoring station data. The areas discharged from the materials to be studied were selected as the areas to be studied, and four areas with floating populations were selected to evaluate health risks. Result: AERMOD was executed after conducting terrain and meteorological processing to obtain predicted concentrations. The health hazard assessment results indicated that only dichloromethane exceeded the threshold for children, while tetrachloroethylene and chloroform appeared at levels that cannot be ignored for both children and adults. Conclusion: Currently, in the domestic context, health hazard assessments are conducted based on the regulations outlined in the "Environmental Health Act" where if the hazard index exceeds a certain threshold, it is considered to pose a health risk. The anticipated expansion of the list of substances subject to the chemical discharge plan to 415 types by 2030 suggests the need for efficient management within workplaces. In instances where the hazard index surpasses the threshold in health hazard assessments, it is judged that effective chemical management can be achieved by prioritizing based on considerations of background concentration and predicted concentration through atmospheric dispersion modeling.