DOI QR코드

DOI QR Code

Enhanced Crystallinity of Piezoelectric Polymer via Flash Lamp Annealing

플래시광 열처리를 통한 압전 고분자의 결정성 향상 연구

  • Donghun Lee (School of Materials Science and Engineering, Kyungpook National University) ;
  • Seongmin Jeong (Department of Mechanical Design Engineering, Kumoh National Institute of Technology) ;
  • Hak Su Jang (School of Materials Science and Engineering, Kyungpook National University) ;
  • Dongju Ha (Department of Materials Science and Metallurgical Engineering, Kyungpook National University) ;
  • Dong Yeol Hyeon (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Yu Mi Woo (Department of Mechanical Engineering (Department of Aeronautics, Mechanical and Electronic Convergence Engineering), Kumoh National Institute of Technology) ;
  • Changyeon Baek (Nuclear System Integrity Sensing and Diagnosis Research Division, Korea Atomic Energy Research Institute) ;
  • Min-Ku Lee (Nuclear System Integrity Sensing and Diagnosis Research Division, Korea Atomic Energy Research Institute) ;
  • Gyoung-Ja Lee (Nuclear System Integrity Sensing and Diagnosis Research Division, Korea Atomic Energy Research Institute) ;
  • Jung Hwan Park (Department of Mechanical Engineering (Department of Aeronautics, Mechanical and Electronic Convergence Engineering), Kumoh National Institute of Technology) ;
  • Kwi-Il Park (School of Materials Science and Engineering, Kyungpook National University)
  • 이동훈 (경북대학교 첨단소재공학부 금속재료공학전공) ;
  • 정성민 (금오공과대학교 기계설계학과) ;
  • 장학수 (경북대학교 첨단소재공학부 금속재료공학전공) ;
  • 하동주 (경북대학교 금속재료공학과) ;
  • 현동열 (한국과학기술원 신소재공학과) ;
  • 우유미 (금오공과대학교 기계공학과(항공기계전자융합전공)) ;
  • 백창연 (한국원자력연구원 원자력안전기반연구소 기기안전진단연구부) ;
  • 이민구 (한국원자력연구원 원자력안전기반연구소 기기안전진단연구부) ;
  • 이경자 (한국원자력연구원 원자력안전기반연구소 기기안전진단연구부) ;
  • 박정환 (금오공과대학교 기계공학과(항공기계전자융합전공)) ;
  • 박귀일 (경북대학교 첨단소재공학부 금속재료공학전공)
  • Received : 2024.05.01
  • Accepted : 2024.06.02
  • Published : 2024.07.01

Abstract

The polymer crystallization process, promoting the formation of ferroelectric β-phase, is essential for developing polyvinylidene fluoride (PVDF)-based high-performance piezoelectric energy harvesters. However, traditional high-temperature annealing is unsuitable for the manufacture of flexible piezoelectric devices due to the thermal damage to plastic components that occurs during the long processing times. In this study, we investigated the feasibility of introducing a flash lamp annealing that can rapidly induce the β-phase in the PVDF layer while avoiding device damage through selective heating. The flash light-irradiated PVDF films achieved a maximum β-phase content of 76.52% under an applied voltage of 300 V and an on-time of 1.5 ms, a higher fraction than that obtained through thermal annealing. The PVDF-based piezoelectric energy harvester with the optimized irradiation condition generates a stable output voltage of 0.23 V and a current of 102 nA under repeated bendings. These results demonstrate that flash lamp annealing can be an effective process for realizing the mass production of PVDF-based flexible electronics.

Keywords

Acknowledgement

본 연구는 2024년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원(No.2022R1A2C1003853, No. RS-2022-00144147)과 한국원자력연구원 기본사업의 지원을 받아 수행되었습니다.

References

  1. L. M. Swallow, J. K. Luo, E. Siores, I. Patel, and D. Dodds, Smart Mater. Struct., 17, 025017 (2008). doi: https://doi.org/10.1088/0964-1726/17/2/025017
  2. C. Erdmier, J. Hatcher, and M. Lee, J. Med. Eng. Technol., 40, 141 (2016). doi: https://doi.org/10.3109/03091902.2016.1153738
  3. Y. Gu, T. Zhang, H. Chen, F. Wang, Y. Pu, C. Gao, and S. Li, Nanoscale Res. Lett., 14, 263 (2019). doi: https://doi.org/10.1186/s11671-019-3084-x
  4. M. Mardonova and Y. Choi, Energies, 11, 547 (2018). doi: https://doi.org/10.3390/en11030547
  5. Z. L. Wang and W. Wu, Angew. Chem. Int. Ed., 51, 11700 (2012). doi: https://doi.org/10.1002/anie.201201656
  6. C. Dagdeviren, Z. Li, and Z. L. Wang, Annu. Rev. Biomed. Eng., 19, 85 (2017). doi: https://doi.org/10.1146/annurev-bioeng-071516-044517
  7. H. Wei, H. Wang, Y. Xia, D. Cui, Y. Shi, M. Dong, C. Liu, T. Ding, J. Zhang, Y. Ma, N. Wang, Z. Wang, Y. Sun, R. Wei, and Z. Guo, J. Mater. Chem. C, 6, 12446 (2018). doi: https://doi.org/10.1039/C8TC04515A
  8. M. D. Maeder, D. Damjanovic, and N. Setter, J. Electroceram., 13, 385 (2004). doi: https://doi.org/10.1007/s10832-004-5130-y
  9. L. Gao, B. L. Hu, L. Wang, J. Cao, R. He, F. Zhang, Z.Wang, W. Xue, H. Yang, and R. W. Li, Science, 381, 540 (2023). doi: https://doi.org/10.1126/science.adh2509
  10. C. M. Baek, G. Lee, and J. Ryu, J. Korean Inst. Electr. Electron. Mater. Eng., 36, 620 (2023). doi: https://doi.org/10.4313/JKEM.2023.36.6.14
  11. P. Ueberschlag, Sens. Rev., 21, 118 (2001). doi: https://doi.org/10.1108/02602280110388315
  12. G. Kalimuldina, N. Turdakyn, I. Abay, A. Medeubayev, A. Nurpeissova, D. Adair, and Z. Bakenov, Sensors, 20, 5214 (2020). doi: https://doi.org/10.3390/s20185214
  13. V. Cauda, S. Stassi, K. Bejtka, and G.Canavese, ACS Appl. Mater. Interfaces, 5, 6430 (2013). doi: https://doi.org/10.1021/am4016878
  14. R. R. Kolda and J. B. Lando, J. Macromol. Sci., Part B: Phys., 11, 21 (1975). doi: https://doi.org/10.1080/00222347508217853
  15. S. Im, S. D. Bu, and C. K. Jeong, J. Korean Inst. Electr. Electron. Mater. Eng., 35, 523 (2022). doi: https://doi.org/10.4313/JKEM.2022.35.6.1
  16. G. T. Davis, J. E. McKinney, M. G. Broadhurst, and S. C. Roth, J. Appl. Phys., 49, 4998 (1978). doi: https://doi.org/10.1063/1.324446
  17. A. Salimi and A. A. Yousefi, Polym. Test., 22, 699 (2003). doi: https://doi.org/10.1016/S0142-9418(03)00003-5
  18. R. Gregorio Jr and N.C.P. de Souza Nociti, J. Phys. D: Appl. Phys., 28, 432 (1995). doi: https://doi.org/10.1088/0022-3727/28/2/028
  19. M. P. Silva, V. Sencadas, G. Botelho, A. V. Machado, A. G. Rolo, J. G. Rocha, and S. Lanceros-Mendez, Mater. Chem. Phys., 122, 87 (2010). doi: https://doi.org/10.1016/j.matchemphys.2010.02.067
  20. V. Tiwari and G. Srivastava, J. Polym. Res., 21, 587 (2014). doi: https://doi.org/10.1007/s10965-014-0587-0
  21. L. Song, J. Cardoletti, A. B. Martinez, A. Bencan, B. Kmet, S. Girod, E. Defay, and S. Glinsek, Nat. Commun., 15, 1890 (2024). doi: https://doi.org/10.1038/s41467-024-46257-0
  22. D. J. Joe, S. Kim, J. H. Park, D. Y. Park, H. E. Lee, T. H. Im, I. Choi, R. S. Ruoff, and K. J. Lee, Adv. Mater., 29, 1606586 (2017). doi: https://doi.org/10.1002/adma.201606586
  23. S. Fink, J. Lubben, T. Schneller, C. Vedder, and U. Bottger, J. Appl. Phys., 131, 125302 (2022). doi: https://doi.org/10.1063/5.0084953
  24. A. Jain, J. S. Kumar, S. Srikanth, V. T. Rathod, and D. R. Mahapatra, Polym. Eng. Sci., 53, 707 (2013). doi: https://doi.org/10.1002/pen.23318
  25. Y. Qi, L. Pan, L. Ma, P. Liao, J. Ge, D. Zhang, Q. Zheng, B. Yu, Y. Tang, and D. Sun, J. Mater. Sci.: Mater. Electron., 24, 1446 (2013). doi: https://doi.org/10.1007/s10854-012-0948-6
  26. B. E. El Mohajir and N. Heymans, Polymer, 42, 5661 (2001). doi: https://doi.org/10.1016/S0032-3861(01)00064-7
  27. X. Cai, T. Lei, D. Sun, and L. Lin, RSC Adv., 7, 15382 (2017). doi: https://doi.org/10.1039/C7RA01267E
  28. L. Ruan, X. Yao, Y. Chang, L. Zhou, G. Qin, and X. Zhang, Polymers, 10, 228 (2018). doi: https://doi.org/10.3390/polym10030228
  29. T. Hattori, M. Hikosaka, and H. Ohigashi, Polymer, 37, 85 (1996). doi: https://doi.org/10.1016/0032-3861(96)81602-8
  30. S. C. Park, C. Nam, C. Baek, M. K. Lee, G. J. Lee, and K. I. Park, ACS Sustainable Chem. Eng., 10, 14370 (2022). doi: https://doi.org/10.1021/acssuschemeng.2c05026