• Title/Summary/Keyword: processing temperature

Search Result 3,769, Processing Time 0.07 seconds

Effect of Annealing Conditions on Microstructures and Mechanical Properties of a 5083 Al Alloy deformed at Cryogenic Temperature (어닐링 조건이 극저온 압연 5083 Al Alloy의 미세조직 및 기계적성질에 미치는 영향)

  • 이영범;남원종
    • Transactions of Materials Processing
    • /
    • v.13 no.5
    • /
    • pp.449-454
    • /
    • 2004
  • The annealing behavior of a 5083 Al alloy deformed at cryogenic temperature was investigated, focusing on the evolution of microstructures and mechanical properties. Especially, the effects of annealing temperature, $150~300^{\circ}C$, and time, 3∼60min., on microstructures and mechanical properties of the sheets received 85% reduction at cryogenic temperature were investigated. The optimization of the annealing conditions resulted in a mixture of equiaxed grains and elongated subgrains, exhibiting a good combination of uniform elongation and high strength.

Profile Ring Rolling Manufacturing Technology of Alloy 718 (초내열합금 링제품의 형상링 압연 제조 기술)

  • Kim, T.O.;Kim, K.J.;Kim, N.Y.;Lee, J.M.;Yeom, J.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.425-428
    • /
    • 2009
  • Aerospace engine application needs to stand high temperature and pressure. Because of its mechanical properties such as high strength at high temperature, Alloy 718 is used aerospace engine application about 80%. But alloy 718's mechanical properties cause some problem to manufacturing profile ring like damage of material and mold. In this study, alloy 718's mechanical properties investigated for knowing its formability and using FE-Simulation for designing profile ring roll process and mold shape. Profile ring rolling processing is designed with "Initial material$\rightarrow$Blank$\rightarrow$Linear Ring$\rightarrow$Profilering". Blank's heating temperature is setting $1100^{\circ}C$ for manufacturing a trial profile ring on the basis of FE-Simulation. As a result of manufacturing alloy 718 profile ring, it is possible to make near target profile shape ring with all of the processing condition which gives in this study.

  • PDF

Estimation of Temperature Distribution on Wafer Surface in Rapid Thermal Processing Systems (고속 열처리공정 시스템에서의 웨이퍼 상의 온도분포 추정)

  • Yi, Seok-Joo;Sim, Young-Tae;Koh, Taek-Beom;Woo, Kwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.481-488
    • /
    • 1999
  • A thermal model based on the chamber geometry of the industry-standard AST SHS200MA rapid thermal processing system has been developed for the study of thermal uniformity and process repeatability thermal model combines radiation energy transfer directly from the tungsten-halogen lamps and the steady-state thermal conducting equations. Because of the difficulties of solving partial differential equation, calculation of wafer temperature was performed by using finite-difference approximation. The proposed thermal model was verified via titanium silicidation experiments. As a result, we can conclude that the thermal model show good estimation of wafer surface temperature distribution.

  • PDF

Investigation into Heat Transfer Characteristics of an Injection Mold by Considering Thermal Contact Resistance (열접촉 저항을 고려한 사출금형의 온도분포특성 고찰)

  • Kim, Kyung-Min;Lee, Ki-Yeon;Sohn, Dong-Hwi;Park, Keun
    • Transactions of Materials Processing
    • /
    • v.20 no.1
    • /
    • pp.29-35
    • /
    • 2011
  • In the design of the injection molding process, various parameters including mold design parameters and molding conditions should be investigated to improve part quality. The mold temperature is one of important processing parameters that affect the flow characteristics, surface appearance, part deformation, mechanical properties, etc. Numerical analyses have been used to predict the temperature distribution of the mold under the given cooling or heating conditions. However, conventional analyses have been performed by assuming that the mold material is a single solid even though a number of plates are assembled to construct an injection mold. In the present study, a numerical approach considering the thermal contact resistance is proposed to provide more reliable prediction of the mold temperature distribution by reflecting the heat-resistance between assembled mold plates.

Design and Fabrication of Power Controller for Temperature Control on Semiconductor Thermal Processing (반도체 열처리 공정을 위한 온도 조절기용 전력 제어장치의 설계 및 제작)

  • 주동만;민경일;황재효
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.4
    • /
    • pp.257-262
    • /
    • 2002
  • A design method of a power controller for controlling the temperature adopted in RTP (rapid thermal processing) which uses the phase control method is presented. The power controller is fabricated by using the design method presented in this paper and is tested. As the results, the range of average voltage from the variable output is 0∼198.06 V and the control resolution is 48.356 mV (12 bit) at the range of the input signal (0∼10 V).

  • PDF

Eutectic Ceramic Composites by Melt-Solidification

  • Goto, Takashi;Tu, Rong
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.4
    • /
    • pp.331-339
    • /
    • 2019
  • While high-temperature ceramic composites consisting of carbides, borides, and nitrides, the so-called ultra-high-temperature ceramics (UHTCs), have been commonly produced through solid-state sintering, melt-solidification is an alternative method for their manufacture. As many UHTCs are binary or ternary eutectic systems, they can be melted and solidified at a relatively low temperature via a eutectic reaction. The microstructure of the eutectic composites is typically rod-like or lamellar, as determined by the volume fraction of the second phase. Directional solidification can help fabricate more sophisticated UHTCs with highly aligned textures. This review describes the fabrication of UHTCs through the eutectic reaction and explains their mechanical properties. The use of melt-solidification has been limited to small specimens; however, the recently developed laser technology can melt large-sized UHTCs, suggesting their potential for practical applications. An example of laser melt-solidification of a eutectic ceramic composite is demonstrated.

A Frequency Model of OCXO for Holdover Mode of DP-PLL (DP-PLL의 Holdover 모드에 대한 OCXO의 주파수 모델)

  • Han, Wook;Hwang, Jin-Kwon;Kim, Yung-Kwon
    • Journal of IKEEE
    • /
    • v.4 no.2 s.7
    • /
    • pp.266-273
    • /
    • 2000
  • A frequency model of an OCXO (Oven Controlled X-tal Oscillator) is suggested to implement a holdover algorithm in a DP-PLL (Digital Processing-Phase Locked Loop) system. This model is presented simply with second order polynomials with respect to temperature and aging of the OCXO. The model parameters are obtained from experimental data by applying the LSM (Least Squared Method). A holdover algorithm is also suggest using the frequency model. The obtained model is verified to simulate the holdover algorithm with experimental phase data due to variation of temperature.

  • PDF

Effects of Li Dopant on Electrical Properties and Microstructure of ZnO Ceramics (Li Dopant가 ZnO 세라믹스의 전기적 특성과 미세 구조에 미치는 영향)

  • Jun, Min-Chul;Koh, Jung-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.4
    • /
    • pp.282-285
    • /
    • 2012
  • It is well known that Zinc Oxide (ZnO) is an attractive material for its various applications. ZnO has been mostly used as a transparent conducting oxide in liquid crystal displays, solar cells due to its advantages of low cost, high productivity, and excellent electrical conductivity. Notably, flexible-dye-sensitized solar cells (DSSCs) based on polyethylene terephthalate (PET) substrates require low temperature sintering processing conditions. Therefore, low temperature processing conditions have been strongly required for transparent conducting film applications. In this paper, we prepared low temperature-sintered ZnO ceramics employing Li as a sintering aid.

Development of advanced laser processing for the fabrication of HTS metallic tapes for power applications (전력용 고온초전도 금속테이프 제작을 위한 첨단 레이저공정 개발)

  • Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.688-691
    • /
    • 1997
  • Good quality superconducting $YBa_2Cu_30_{7-{\delta}}$(YBCO) thin films were grown on Hastelloy (Ni-Cr-Mo alloys) with yttria-stabilized zirconia(YSZ) buffer layers by in situ pulsed laser deposition in a multi-target processing chamber. Generally, Hastelloy exhibits excellent resistance to corrosion, fatigue, thermal shock, impact, and erosion. However, it is difficult to make films on flexible metallic substrates due to interdiffusion problems between metallic substrates and superconducting overlayers. To overcome this difficulty, it is necessary to use YSZ buffer layer since it will not only limit the interdiffusion process but also minimize the surface microcrack formation due to smaller mismatch between the film and the substrate. In order to enhance the crystallinity of YBCO films on metallic substrates, YSZ buffer layers were grown at various temperatures different from the deposition temperature of YBCO films. On YSZ buffer layer grown at higher temperature than that for depositing YBCO film, the YBCO thin film was found to be textured with c-axis orientation by x-ray diffraction and had a zero-resistance critical temperature of about 85K.

  • PDF

Burn-out Finishing of Cotton/Polyester Fiber Mixed Fabrics using Cupric Sulfate (황산구리를 이용한 면/폴리에스터 교직물의 탄화가공)

  • 김수미;송화순
    • Journal of the Korean Home Economics Association
    • /
    • v.42 no.8
    • /
    • pp.113-121
    • /
    • 2004
  • This study used cupric sulfate as a bum-out agent. The concentration of cupric sulfate, temperature and time were varied with glycerin included or excluded on the properties of polyester ground fabrics. The results are as follows. The effect of carbonization with glycerin included was decreased, but removal of carbide with glycerin included was easier than that with glycerin excluded. The white index and tensile strength of polyester ground fabrics were decreased as the processing concentration, temperature and time increased. The shrinkage was increased as the processing concentration, temperature and time increased. The optimum conditions with cupric sulfate as the bum-out agent was 5% concentration, 140$^{\circ}C$, 3min., and 3kgf/cm$^2$ and with cupric sulfate added to glycerin was 5% concentration, 150$^{\circ}C$, 5min., and 3kgf/cm$^2$.