• Title/Summary/Keyword: processing temperature

Search Result 3,761, Processing Time 0.031 seconds

An RTP Temperature Control System Based on LQG Design (LQG 설계에 의한 RTP 온도제어 시스템)

  • Song, Tae-Seung;Yoo, Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.6
    • /
    • pp.500-505
    • /
    • 2000
  • This paper deals with wafer temperature uniformity control essential in rapid thermal processing (RTP). One of the important control objectives of RTP is to keep the temperature over the wafer surface as uniformly as possible. For this, a discrete time state equation around the operating point is first identified by using the subspace fitting method, and a multivariable LQG(Linear Quadratic Gaussian) controller is designed based on the identified model. Simulation and experimental results show improvement in temperature uniformity over the conventional PID method.

  • PDF

Processing of NiTi Shape Memory Alloy by Self- propagating High-temperature Synthesis (자전 고온 반응 합성법을 이용한 NiTi계 형상기억 합금의 제조에 관한 연구)

  • 윤종필
    • Journal of Powder Materials
    • /
    • v.2 no.2
    • /
    • pp.158-164
    • /
    • 1995
  • Synthesis of the NiTi shape memory alloy using the thermal explosion mode of the self-propagating high-temperature synthesis has been investigated. The significant fractions of intermetallics phases were found to form at the Ti/Ni powder interface during the heating to the ignition temperature and seemed to influence the relative fraction of phases in the final products. As the heating rate to the ignition temperature was increased, the combustion temperature and the fraction of NiTi in the final reaction products were increased. The synthesis reaction under 70 MPa compressive pressure yielded a reaction product with 98% theoretical density.

  • PDF

Effect of Precipitates on the High Temperature Tensile Properties of Cast Alloy 718 (주조용 718합금의 고온 인장 성질에 미치는 석출물의 영향)

  • Ju, Dong-Won;Jo, Chang-Yong;Kim, Du-Hyeon;Ryu, Yeong-Su;Kim, In-Su;Jo, Hae-Yong;Choe, Seung-Ju
    • Korean Journal of Materials Research
    • /
    • v.10 no.7
    • /
    • pp.515-521
    • /
    • 2000
  • The effect of precipitates on the high temperature tensile properties of cast alloy 718 was investigated by phase extraction method and microstructural observation. The value of tensile strength and elongation gradually decreased with increasing testing temperature up to $760^{\circ}C$. Elongation of the alloy increased, while tensile strength decreased above 76$0^{\circ}C$. The amount of precipitates in the specimen that tensile tested at $760^{\circ}C$ showed maximum owing to stress assisted precipitation. Therefore, the alloy exhibited the lowest value of the elongation and the degree of decrease in yield strength at this temperature due to high flow stress of precipitates. Little amount of precipitate, especially $\gamma$' and $\gamma$", resulted in softening of the alloy at the temperature above $760^{\circ}C$.

  • PDF

Extrusion Process of Barley Flour for Snack Processing (스낵제조를 위한 보리의 압출성형공정)

  • Mok, Chul-Kyoon;Pyler, R.E.;Mcdonald, C.E.;Nam, Young-Jung;Min, Byong-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.429-436
    • /
    • 1984
  • To expand the utility of barley the experiments on the extrusion characteristics of barley flour for snack processing were carried out and the effects of the extrusion conditions on the quality of the extrudates were investigated. The optimum moisture content of barley flour for snack processing was 20%. The moisture content and the density of the extrudates decreased with increasing extrusion temperature and decreasing die size. The die swell ranged from 0.98 to 2.18 according to various extrusion conditions and decreased with increasing temperature above $150^{\circ}C$. The lightness, redness and yellowness increased at higher temperature. The water absorption index and the water solubility index showed their maximum values at $180^{\circ}C$.The gelatinization degree of the extrudates increased with increasing temperature. The fracture fore, Young's modulus and maximum fiber stress decreased, but the deformation to fracture increased, with increasing temperature and decreasing die size. The yield force in puncture test showed lower values at higher temperature. The size and the fraction of the air cells increased with increasing temperature and decreasing die size. The optimum extrusion conditions of barley for snack processing were at the temperature of $180^{\circ}C$, with the die size of 4.5mm when processed at 160 rpm.

  • PDF

Antioxidant Activity of Pleurotus ostreatus and Pleurotus eryngii Hot Water Extracts by Drying Methods (건조 방법에 따른 느타리버섯과 새송이버섯 열수추출물의 항산화 활성)

  • Kim, NaMi;Park, Jong-Dae;Choi, Yun-Sang;Lee, Myunghee;Sung, Jung-Min
    • The Korean Journal of Food And Nutrition
    • /
    • v.33 no.1
    • /
    • pp.64-73
    • /
    • 2020
  • The purpose of this study was to investigate the antioxidant activity and β-glucan content of extracts extracted by varying the temperature at 30, 55 and 80℃ after hot air drying or freeze drying of Pleurotus ostreatus and Pleurotus eryngii. For the analysis antioxidant activity of each mushroom, β-glucan, total phenol, flavonoid contents, and DPPH·ABTS+·Nitrite assay were measured. Also, the β-glucan content, total flavonoid content and ABTS+ scavenging activity increased with freeze drying rather than hot air drying, and increased with increasing extraction temperature in both mushrooms. However, the total phenol and nitrite scavenging activity increased with hot air drying rather than freeze drying, and decreased with increasing temperature in both mushrooms. DPPH scavenging activity was not significant in both mushrooms, but decreased with increasing extraction temperature. Pearson's correlations between total flavonoid content and antioxidant activities were r=0.719~0.753 (p<0.01). As a result, the β-glucan content, total flavonoid content, and ABTS radical cation scavenging activity were highest during freeze drying and extraction at 80℃. And the highest total phenol content, DPPH radical scavenging activity and nitrite scavenging activity were obtained during hot air drying and extraction at 30℃.

Deterioration Characteristics of Naturally Aged AA 2026 due to ExpoSure to High Temperatures (자연 시효 처리된 AA 2026의 고온 노출에 따른 물성 열화 특성에 대한 연구)

  • HaNeul Kim;HyeonWoo Kang;ByoungLok Jang;HeeKook Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.3
    • /
    • pp.114-120
    • /
    • 2024
  • AA 2026, which is used as an aviation material, is an improved version of 2024 and has higher physical properties, and is a material that has the potential to be applied to supersonic aircraft to be developed in the future. However, when an aircraft exceeds supersonic speeds, the surface heats up and the material must be resistant to this. Therefore, this study confirmed the high-temperature properties of AA 2026, an aviation structural material. AA 2026, solution treated at 500℃ for 4hr, was naturally aged at room temperature for more than 168 hr. Changes in microstructure and physical properties were confirmed over several hours of exposure to 100℃, 200℃, and 300℃, respectively. As a result of microstructure analysis, there was no significant change at 100℃, and from 200℃, GPB, a strengthening mechanism, grew and formed an S Phase. It was confirmed that the S Phase grew as the exposure time increased. Through a tensile test, it was confirmed that physical properties deteriorated as the precipitates grew. However, it was confirmed that the properties were stably maintained at 100℃, which is the temperature when the speed of a supersonic aircraft is less than Mach 2.

Application of Mechanochemical Processing for Preparation of Si3N4-based Powder Mixtures

  • Sopicka-Lizer, Malgorzata;Pawlik, Tomasz
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.337-341
    • /
    • 2012
  • Mechanochemical processing (MCP) involves several high-energy collisions of powder particles with the milling media and results in the increased reactivity/sinterability of powder. The present paper shows results of mechanochemical processing (MCP) of silicon nitride powder mixture with the relevant sintering additives. The effects of MCP were studied by structural changes of powder particles themselves as well as by the resulting sintering/densification ability. It has been found that MCP significantly enhances reactivity and sinterability of the resultant material: silicon nitride ceramics could be pressureless sintered at $1500^{\circ}C$. Nevertheless, a degree of a silicon nitride crystal lattice and powder particle destruction (amorphization) as detected by XRD studies, is limited by the specific threshold. If that value is crossed then particle's surface damage effects are prevailing thus severe evaporation overdominates mass transport at elevated temperature. It is discussed that the cross-solid interaction between particles of various chemical composition, triggered by many different factors during mechanochemical processing, including a short-range diffusion in silicon nitride particles after collisions with other types of particles plays more important role in enhanced reactivity of tested compositions than amorphization of the crystal lattice itself. Controlled deagglomeration of $Si_3N_4$ particles during the course of high-energy milling was also considered.

The Study on the Wafer Surface and Pad Characteristic for Optimal Condition in Wafer Final Polishing (최적조건 선정을 위한 Pad 특성과 Wafer Final Polishing의 가공표면에 관한 연구)

  • Won, Jong-Koo;Lee, Eun-Sang;Lee, Sang-Gyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • Polishing is one of the important methods in manufacturing of Si wafers and in thinning of completed device wafers. This study will report the characteristic of wafer according to processing time, machining speed and pressure which have major influence on the abrasion of Si wafer polishing. It is possible to evaluation of wafer abrasion by load cell and infrared temperature sensor. The characteristic of wafer surface according to processing condition is selected to use a result data that measure a pressure, machining speed, and the processing time. This result is appeared by the characteristic of wafer surface in machining condition. Through that, the study cans evaluation a wafer characteristic in variable machining condition. It is important to obtain optimal condition. Thus the optimum condition selection of ultra precision Si wafer polishing using load cell and infrared temperature sensor. To evaluate each machining factor, use a data through each sensor. That evaluation of abrasion according to variety condition is selected to use a result data that measure a pressure, machining speed, and the processing time. And optimum condition is selected by this result.

Processing and mechanical property evaluation of maize fiber reinforced green composites

  • Dauda, Mohammed;Yoshiba, Masayuki;Miura, Kazuhiro;Takahashi, Satoru
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.335-347
    • /
    • 2007
  • Green composites composed of long maize fibers and poly $\varepsilon$-caprolactone (PCL) biodegradable polyester matrix were manufactured by the thermo-mechanical processing termed as 'Sequential Molding and Forming Process' that was developed previously by the authors' research group. A variety of processing parameters such as fiber area fraction, molding temperature and forming pressure were systematically controlled and their influence on the tensile properties was investigated. It was revealed that both tensile strength and elastic modulus of the composites increase steadily depending on the increase in fiber area fraction, suggesting a general conformity to the rule of mixtures (ROM), particularly up to 55% fiber area fraction. The improvement in tensile properties was found to be closely related to the good interfacial adhesion between the fiber and polymer matrix, and was observed to be more pronounced under the optimum processing condition of $130^{\circ}C$ molding temperature and 10 MPa forming pressure. However, processing out of the optimum condition results in a deterioration in properties, mostly fiber and/or matrix degradation together with their interfacial defect as a consequence of the thermal or mechanical damages. On the basis of microstructural observation, the cause of strength degradation and its countermeasure to provide a feasible composite design are discussed in relation to the optimized process conditions.

Effects of Drying Condition and Binding Agent on the Quality Characteristics of Ground Dried-Pork Meat Products

  • Choi, Yun-Sang;Ku, Su-Kyung;Park, Jong-Dae;Kim, Hee-Ju;Jang, Aera;Kim, Young-Boong
    • Food Science of Animal Resources
    • /
    • v.35 no.5
    • /
    • pp.597-603
    • /
    • 2015
  • The purpose of this study was to investigate the influence of processing conditions (temperature and time) and binding agent types (glutinous rice flour, potato starch, bean flour, and acorn flour) on the physicochemical and sensory characteristics of ground dried-pork meat product. For this purpose, ground dried-pork meat product was produced by adding several binding agents at different drying temperatures and times. The drying time affected moisture content and water activity in all drying temperature. However, under the similar drying conditions, the extent of drying varied depending on the type of binding agents. The results of sensory evaluation for texture degree and overall acceptability indicated the following: overall, higher drying temperatures and longer drying time heightened the degree of texture, and the overall acceptability varied depending on binding agent type. Physicochemical and sensory characteristics were analyzed to determine any possible correlation. The results revealed a high correlation between moisture content, water activity, shear forces, and sensory evaluation (p<0.01). However, there was no correlation with respect to overall acceptability.