본 논문은 골프 스윙 자세 학습자를 위하여 골프 스윙의 참조 모델인 3D 모델과 학습자의 골프 스윙을 촬영한 동영상을 대상으로 스윙 동작 시 각각의 위치 및 시간에서 각 동작을 정밀하게 비교 분석하기 위해 3D 모델의 골프 스윙 동작과 학습자의 스윙 동작을 동기화 시키는 방법을 제안하고 구현한 결과를 제시한다. 3D 모델과 학습자의 스윙 동영상을 동기화시켜 재생하기 위해서 먼저 학습자의 골프 스윙 동영상을 촬영하고, 촬영한 동영상으로부터 어드레스 자세부터 피니쉬 자세까지 골프 클럽의 위치에 따라 상대적 시간 정보를 추출한다. 고품질 모션 캡쳐 장비를 통해 초당 120프레임으로 캡처된 골프 전문가의 움직임 정보를 3D 모델에 리깅한 3D 참조 모델에 학습자 스윙 동영상으로부터 추출한 골프 클럽의 위치별 시간 정보를 적용하여 3D 참조 모델과 학습자의 스윙 동영상을 동기화시켜 재생함으로 학습자는 골프 스윙의 각 위치에서 참조 모델과 자신의 자세를 정밀하게 비교함으로 자세를 교정하거나 학습할 수 있다. 동기화된 재생을 통하여 기존의 수동적으로 위치를 조정하며 참조 모델과 학습자의 스윙을 비교 분석하는 시스템의 기능을 편리하게 사용할 수 있도록 개선할 수 있으며, 골프 자세의 각 위치를 검출하는 영상 처리 기술을 적용한 부분을 제외하고, 동기화시키기 위해 동영상에서 자동적으로 각 위치의 시간 정보를 추출하여 동기화시켜 재생하는 방법은 일반적인 생활 스포츠 분야로 확대하여 활용할 수 있을 것으로 기대한다.
인력기반 터널 점검은 점검자의 주관적인 판단에 영향을 받으며 지속적인 이력관리가 어렵다. 따라서 최근에는 딥러닝 기반 자동 균열 탐지 연구가 활발히 진행되고 있다. 하지만 대부분의 연구에서는 사용하는 대규모 공개 균열 데이터셋은 터널 내부에서 발생하는 균열과 매우 상이하다. 또한 현행 터널 상태평가에서 정교한 균열 레이블을 구축하기 위해서는 추가적인 작업이 요구된다. 이에 본 연구는 균열 형상이 다소 단순하게 표현된 기존 데이터셋을 딥러닝 모델에 입력하여 균열 탐지 성능을 개선하는 방안을 제시한다. 기존 터널 데이터셋, 고품질 터널 데이터셋과 공개 균열 데이터셋을 조합하여 학습한 딥러닝 모델의 성능 평가와 비교를 수행한다. 그 결과 Cross Entropy 손실함수를 사용한 DeepLabv3+에 공개 데이터셋, 패치 단위 분류와 오버샘플링을 수행한 터널 데이터셋을 모두 학습한 경우 성능이 가장 좋았다. 향후 기 구축된 터널 영상 취득 시스템 데이터를 딥러닝 모델 학습에 효율적으로 활용하기 위한 방안을 수립하는 데 기여할 것으로 기대한다.
본 연구는 천리안 해양위성 2호(GOCI-II)를 활용하여 개발된 해무 탐지 알고리즘의 초기 결과에 대한 분석을 수행하였다. GOCI-II 해무 탐지 성능을 확인하기 위해 1호와 2호가 중복으로 관측한 2020년 10월-2021년 3월 사이에 발생한 해무 사례에 대해 광학적 특성 분석을 실시하였다. 해무 탐지 알고리즘에 입력자료로 사용되는 412 nm 밴드 레일리 산란 보정 반사도(Rayleigh-corrected reflectance; Rrc)와 정규화된 국소 표준 편차(Normalized Local Standard Deviation; NLSD)를 GOCI, GOCI-II 자료를 시공간 일치시킨 뒤 분석한 결과 412 nm 밴드 레일리 Rrc의 경우 0.01의 평균 제곱근 오차 (Root Mean Squared Error; RMSE)와 0.998의 상관계수(correlation coefficient)을 나타내고, NLSD의 경우 0.007의 RMSE, 0.798의 correlation을 나타낸다. 해무와 구름이 갖는 광학적 특성을 분석하기 위해 천리안 해양위성 2호의 밴드 별 Rrc 값을 확인하였다. 구름의 경우 넓은 영역에서 높은 반사도를 보인 반면, 해무의 경우 모든 밴드에서 구름에 비해 상대적으로 반사도가 낮고 좁은 영역에 분포한다. 실제 해무 사례에 대해 GOCI와 GOCI-II 해무 탐지 알고리즘을 비교한 결과 전반적인 해무 탐지 성능은 크게 차이가 없으나 높아진 공간 해상도의 영향으로 해무 경계면에서 공간적으로 더 세밀한 탐지가 가능했다. 종관기상관측소 시정계 자료와 비교 분석하여 초기 자료에 대한 신뢰도를 조사하였다. 추후 충분한 샘플 확보로 인한 안정적인 성능 검증, 실시간 구름 정보 교체를 통한 후처리 과정 개선, 에어로졸 자료 추가로 해무 오탐지 감소를 통해 해무 탐지 알고리즘의 성능 향상이 기대된다.
교육용으로 사용되는 피삭재(소재)는 SM20C, Al6061, 아크릴 등의 소재를 사용한다. SM20C 소재는 탄소강으로서 자격증 시험 및 기능경기대회에서 많이 사용되지만 산업현장에서도 많이 사용된다. Al6061 소재는 탄소강에 비하여 경도가 낮아지고 전성(연성)이 강한 소재이기에 공구의 구성인선이 많이 발생하는 소재 라고 한다. 아크릴 소재를 이용하여 학생들에게 실습지도 하면 어느 부분에서 과다 절삭으로 인하여 진동이 발생하고 공구의 파손이 발생하는 소재이다. 이러한 과정에서 5축장비인 2NC헤드에게 가해지는 충격이 정밀도 제어에는 어느정도 영향을 줄 수 있는지 알아본다. 5축장비의 가장 취약한 부분은 AC축을 제어하는 헤드가 가장 약한 부분이라 할 수 있다. 이 부분의 정밀도 및 누적 공차가 발생할 경우 모든 제품의 정밀도가 떨어지는 현상이 발생한다. 따라서 2NC헤드의 핵심적인 부분, 스핀들 하우징은 Al7075 T6(미국 알코아사) 소재를 사용하고 전체 바디는 FCD450 (구상흑연주철) 사용하여 진행하였다. 이 두가지 소재에서 작용되는 진동 및 절삭 과정에서 힘을 극한조건에서 유한요소 해석으로 적용되는 값을 밝혀 내고자 해석을 진행하였다. 이러한 해석 데이터를 활용하여 학생들이 5축절삭 보다 5축 가공기의 구조를 보고 이해하는데 도움이 되기를 기대한다.
본 연구는 건축사회환경공학부 대학생과 건설회사 노동자들을 대상으로 K-CESA 핵심역량 중 비인지적영역(자기관리역량, 대인관계역량)과 인지적 영역(의사소통역량, 종합적사고력)을 측정하고 분석했다. 건설회사 노동자 25명과 𐩒𐩒대학교 건축사회환경공학부 3, 4학년 대학생 36명 통 71명을 대상으로 K-CESA 진단평가를 실시했다. 집단간의 차이를 알아보기 위해 평균차이 검증인 일원변량분석(One-way ANOVA)을 실시했으며 사후검증으로 Scheffe 검증을 실시했다. 본 연구의 실증분석은 모두 유의수준 p<.05에서 검증했으며, 통계처리는 SPSS WIN. 23.0 프로그램을 사용해 분석했다. 주요 연구결과는 다음과 같다. 첫째, 건설회사 노동자와 건축사회환경공학부 학생간 다섯 가지 능력(자기관리역량의 목표지향적 계획수립 및 실행능력, 대인관계역량의 협력, 중재, 리더십능력, 의사소통역량의 말하기 능력 및 종합적사고력역량의 분석적사고력능력)에서 유의미한 차이를 보였다. 둘째, 전문가 요구 분석 및 문헌 분석을 통해 대학생들에게 필요한 전문가 요구 분석과 문헌 분석을 통해 목표지향적 계획수립 및 실행능력과 분석적사고력능력을 향상시키기 위한 교육 프로그램을 설계했다. 후속 연구를 통해, 다양한 전공과 공공기관, 기업, 기타 조직 노동자의 역량을 비교하고 대학생을 위한 교과목 개발이 필요하다고 제언했다.
대한민국 건설사들은 아파트 하자 정보를 축적하고 보수작업을 관리하기 위한 시스템을 운영하는데 상당한 인력과 비용을 투자하고 있다. 본 연구에서는 하자 접수 상세내용 텍스트 데이터를 이용하여 하자 보수 시설공사에 따른 세부공종을 분류하는 머신러닝 모델을 제안한다. 두 가지 단어 임베딩(Bag-of-words, Term Frequency-Inverse Document Frequency (TF-IDF))과 두 가지 분류기(Support Vector Machine, Random Forest)를 통해 한국어로 작성된 65만건 이상의 하자 접수데이터로부터 하자보수 시설공사 세부공종을 분류했다. 특히, 이번 연구에서는 특정 시설공사(마감공사)의 9개 세부공종(가전제품, 도배공사, 도장공사, 미장공사, 석공사, 수장공사, 옥내가구공사, 주방기구공사, 타일공사)을 분류하는 이진분류 모델과 다중 분류 모델을 연구했다. 그 결과, TF-IDF와 Random Forest를 사용한 두가지 분류 모델에서 90%이상의 정확도, 정밀도, 재현율 및 F1점수를 확인했다.
NGS (Next-generation sequencing), 즉 차세대염기서열분석은 유전체 수준의 방대한 DNA를 작은 절편으로 만들어서 그 절편들의 염기서열들을 동시에 읽어내는 기법이다. 현재 다양한 생명체의 유전체 염기서열 분석부터 cDNA (complementary DNA)나 ChIPed DNA (chromatin immunoprecipitated DNA)를 분석하는데 이 NGS 기법을 사용하고 있으며, 이 때 얻어진 데이터를 적절히 처리하고 분석하는 일은 생물학적으로 유의미한 결과를 얻기 위하여 중요하다. 하지만 대용량 데이터의 저장 및 활용, 그리고 컴퓨터 프로그래밍 바탕의 데이터 분석은 실험을 수행하는 일반 생물학자들에게 어려운 일이다. Galaxy 플랫폼은 다양한 NGS 데이터 분석 tool을 무료로 제공하는 웹 서비스이며, 생물정보학이나 프로그래밍에 대한 전문지식이 없는 연구자들에게 웹 브라우저만을 이용하여 데이터를 분석할 수 있는 환경을 제공한다. 본 논문에서는 ChIP-seq (chromatin immunoprecipitation-sequencing) 수행을 위한 라이브러리 제작 과정 및 Galaxy 플랫폼을 이용한 ChIP-seq 데이터 분석 과정을 설명하고, K562 세포주에서 수행한 히스톤 H3K4me1 ChIP-seq 결과가 public 데이터와 일치함을 보여준다. 따라서 Galaxy 플랫폼을 활용한 NGS 데이터 분석은 생물정보학에 대한 손쉬운 접근 방법을 제공할 것으로 기대된다.
빠르게 증가하는 노후 터널을 효율적으로 관리하기 위하여 최근 영상장비를 이용한 점검 방법론들이 많이 제안되고 있다. 하지만 기존의 방법론들은 대부분 국한된 영역에서 검증을 수행하였을 뿐 아니라, 다른 물체들이 존재하지 않는 깨끗한 콘크리트 표면에서 검증되어 실제 현장에 대한 적용성을 검증하기 어려웠다. 따라서 본 논문에서는 이러한 한계를 극복하기 위하여 비균열 물체 학습에 기반한 6단계 터널 균열 탐지 딥러닝 모델 개발 프레임워크를 제안한다. 제안된 프레임워크는 터널에서 취득된 이미지 내 균열 탐색, 픽셀 단위 균열 라벨링, 딥러닝 모델 학습, 비균열 물체 수집, 비균열 물체 재학습, 최종 학습 데이터 구축의 총 6단계로 이루어진다. 제안된 프레임워크를 이용하여 개발된 균열 탐지 딥러닝 모델 개발을 수행하였으며, 일반 균열 1561장, 비균열 206장으로 개별 물체 세분화(Instance Segmentation) 모델인 Cascade Mask R-CNN을 학습시켰다. 학습된 모델의 현장 적용성을 검토하기 위하여 전선, 전등 등을 포함하는 약 200m 길이의 실제 터널에서 균열 탐지를 수행하였다. 실험 결과 학습된 모델은 99% 정밀도와 92%의 재현율을 나타내며 뛰어난 현장 적용성을 나타내었다.
국제해사기구는 최근의 황함유량 규제강화에 따라 선상의 배출가스 오염문제를 최근 선제적 대응방침을 제시하고 있다. 물론, 연료유 품질향상 및 배출가스 저감에 대한 논의 또한 지속적으로 진행되고 있는 상황이다. 국제적으로 가장 큰 관심사 중 하나인 연료유 품질정보는 황 함유량 기준이 현행 3.5%에서 2020년까지 0.5%로 한층 더 강화된 규정을 적용하게 되면서 그 관심이 증가되고 있다. 선사 및 수급자 측면에서 고려해보면, 연료유의 기본품질은 국내외적인 연료유 정보, 기본성상, 실선 및 함정의 적용을 위한 특성간의 상관성 정보까지 확대된 개념이라고 볼 수 있다. 이와 관련하여, 본 논문에서는 ISO 8217에 의한 기본 연료유 품질분석 결과를 제시하고, 연료의 점화성, 분산성, 기타특성에 대해서 분석하였다. 또한, 선박용 연료유 샘플과 희석율에 따라 점화성, 분산성을 분석하였고, 군용 연료유의 기본품질을 인용자료와 실험실 내 산출값 내에서 확인하고자 하였다. 물론, 현재의 연료유의 기본품질에 대한 규격이 일반적으로 통용되고 있으나, 연료유의 성상과 조성이 매우 복잡한 상황이다. 즉, 그 기본품질에 대한 해석이 매우 어려운 것은 기본규격의 범위를 벗어나는 사례가 다수 존재하고 있기 때문이다. 연료유의 기본품질과 선박에서의 운항최적화, 군용연료에서의 연료효율이라는 측면에서 연료유의 기본품질에 대해서 다양한 인자분석은 매우 핵심이라고 판단하고, 희석에 따른 그 기준의 적용 범위에 대해서 가능성을 제시하고자 하였다.
최근 COVID-19 확산 방지를 위한 공공장소에서는 최소 1m 이상을 유지하는 물리적 거리두기 정책을 실행하고 있다. 본 논문에서는 드론과 CCTV가 취득한 스테레오 영상에서 실시간으로 사람들 간의 거리를 추정하는 방법과 추정된 거리에서 1m 이내의 객체를 인식하는 자동화 시스템을 제안한다. 기존의 CCTV를 이용하여 다중 객체 간의 거리 추정에 사용되었던 방법의 문제점으로는 한 대의 CCTV만을 이용하여 객체의 3차원 정보를 얻지 못한다는 것이다. 선, 후행하거나 겹쳐진 사람 간의 거리를 구하기 위해서는 3차원 정보가 필요하기 때문이다. 또한, 일반적인 Detected Bounding Box를 사용하여 영역 안에서 사람이 존재하는 정확한 좌표를 얻지 못한다. 따라서 사람이 존재하는 정확한 위치 정보를 얻기 위해 스켈레톤 추출하여 관절 키포인트의 2차원 좌표를 획득한 후, Stereo Vision을 이용한 카메라 캘리브레이션을 적용하여 3차원 좌표로 변환한다. 3차원으로 변환된 관절 키포인트의 중심좌표를 계산하고 객체 간 사이의 거리를 추정한다. 3차원 좌표의 정확성과 객체(사람) 간의 거리 추정 실험을 수행한 결과, 1m 이내에 존재하는 다수의 사람 간의 거리 추정에서 0.098m 이내 평균오차를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.