Browse > Article
http://dx.doi.org/10.7780/kjrs.2021.37.5.2.9

The GOCI-II Early Mission Marine Fog Detection Products: Optical Characteristics and Verification  

Kim, Minsang (Korea Ocean Satellite Center, Korea Institute of Ocean Science and Technology)
Park, Myung-Sook (Korea Ocean Satellite Center, Korea Institute of Ocean Science and Technology)
Publication Information
Korean Journal of Remote Sensing / v.37, no.5_2, 2021 , pp. 1317-1328 More about this Journal
Abstract
This study analyzes the early satellite mission marine fog detection results from Geostationary Ocean Color Imager-II (GOCI-II). We investigate optical characteristics of the GOCI-II spectral bands for marine fog between October 2020 and March 2021 during the overlapping mission period of Geostationary Ocean Color Imager (GOCI) and GOCI-II. For Rayleigh-corrected reflection (Rrc) at 412 nm band available for the input of the GOCI-II marine fog algorithm, the inter-comparison between GOCI and GOCI-II data showed a small Root Mean Square Error (RMSE) value (0.01) with a high correlation coefficient (0.988). Another input variable, Normalized Localization Standard (NLSD), also shows a reasonable correlation (0.798) between the GOCI and GOCI-II data with a small RMSE value (0.007). We also found distinctive optical characteristics between marine fog and clouds by the GOCI-II observations, showing the narrower distribution of all bands' Rrc values centered at high values for cloud compared to marine fog. The GOCI-II marine fog detection distribution for actual cases is similar to the GOCI but more detailed due to the improved spatial resolution from 500 m to 250 m. The validation with the automated synoptic observing system (ASOS) visibility data confirms the initial reliability of the GOCI-II marine fog detection. Also, it is expected to improve the performance of the GOCI-II marine fog detection algorithm by adding sufficient samples to verify stable performance, improving the post-processing process by replacing real-time available cloud input data and reducing false alarm by adding aerosol information.
Keywords
GOCI; GOCI-II; Marine Fog Detection;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Choi, M., J. Kim, J. Lee, M. Kim, Y.J. Park, U. Jeong, W. Kim, H. Hong, B. Holben, T.F. Eck, C.H. Song, J.-H. Lim, and C.K. Song, 2016. GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during the DRAGON-NE Asia 2012 campaign, Atmospheric Measurement Techniques, 9(3): 1377-1398.   DOI
2 Cortes, C. and V. Vapnik, 1995. Support-vector networks, Machine Learning, 20: 273-297.   DOI
3 Goutte, C. and E. Gaussier, 2005. A probabilistic interpretation of precision, recall and F-score, with implication for evaluation, Proc. of European conference on information retrieval, Santiago de Compostela, ES, Mar. 21-23, pp. 345-359.
4 Hunt, G.E., 1973. Radiative properties of terrestrial clouds at visible and infra-red thermal window wavelengths, Quarterly Journal of the Royal Meteorological Society, 99(420): 346-369.   DOI
5 Jain, A.K., J. Mao, and K.M. Mohiuddin, 1996. Artificial neural networks: A tutorial, Computer, 29(3): 31-44.   DOI
6 Kim, D., M.S. Park, Y.J. Park, and W. Kim, 2020. Geostationary Ocean Color Imager (GOCI) marine fog detection in combination with Himawari-8 based on the decision tree, Remote Sensing, 12(1): 149.   DOI
7 Suh, M.S., S.J. Lee, S.H. Kim, J.H. Han, and Seo, 2017. Development of land fog detection algorithm based on the optical and textural properties of fog using COMS data, Korean Journal of Remote Sensing, 33(4): 359-375 (in Korean with English abstract).   DOI
8 Heo, K.Y., J.H. Kim, J.S. Shim, K.J. Ha, A.S. Suh, H.M. Oh, and S.Y. Min, 2008. A remote sensed data combined method for sea fog detection, Korean Journal of Remote Sensing, 24(1): 1-16 (in Korean with English abstract).   DOI
9 Gao, S.H., W. Wu, L. Zhu, and G. Fu, 2009. Detection of nighttime sea fog/stratus over the Huang-hai Sea using MTSAT-1R IR data, Acta Oceanologica Sinica, 28(2): 23-35.
10 Zhang, S. and L. Yi, 2013. A comprehensive dynamic threshold algorithm for daytime sea fog retrieval over the Chinese adjacent seas, Pure and Applied Geophysics, 170(11): 1931-1944.   DOI
11 Tremant, M., 1987. La prevision du brouillard en mer. Meteorologie Maritime et Activities Oceanographique Connexes, apport No. 20. TD no. 211, World Meteorological Organization, Geneva, CH.
12 Eyre, J.R., J.L. Brownscombe, and R.J. Allam, 1984. Detection of fog at night using Advanced Very High Resolution Radiometer (AVHRR) imagery, Meteorological Magazine, 113(1346): 266-271.
13 Anthis, A.I. and A.P. Cracknell, 1999. Use of satellite images for fog detection (AVHRR) and forecast of fog dissipation (METEOSAT) over lowland Thessalia, Hellas, International Journal of Remote Sensing, 20(6): 1107-1124.   DOI
14 Breiman, L., 2001. Random forests, Machine Learning, 45(1): 5-32.   DOI
15 Cermak, J. and J. Bendix, 2008. A novel approach to fog/low stratus detection using Meteosat 8 data, Atmospheric Research, 87(3-4): 279-292.   DOI
16 Kamangir, H., W. Collins, P. Tissot, S.A. King, H.T.H. Dinh, N. Durham, and J. Rizzo, 2021. FogNet: A multiscale 3D CNN with double-branch dense block and attention mechanism for fog prediction, Machine Learning with Applications, 5: 100038.   DOI
17 Kim, Y.H., S.H. Moon, and Y. Yoon, 2020-b. Detection of Precipitation and Fog Using Machine Learning on Backscatter Data from Lidar Ceilometer, Applied Sciences, 10(18): 6452.   DOI
18 Quinlan, J.R., 1986. Induction of decision trees, Machine Learning, 1: 81-106.   DOI
19 Yuan, Y., Z. Qiu, D. Sun, S. Wang, and X. Yue, 2016. Daytime sea fog retrieval based on GOCI data: a case study over the Yellow Sea, Optics Express, 24(2): 787-801.   DOI