• Title/Summary/Keyword: processing aid

Search Result 278, Processing Time 0.029 seconds

Effect of Surfactant on the Physical Properties and Crosslink Density of Silica Filled ESBR Compounds and Carbon Black Filled Compounds

  • Hwang, Kiwon;Kim, Woong;Ahn, Byungkyu;Mun, Hyunsung;Yu, Eunho;Kim, Donghyuk;Ryu, Gyeongchan;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.53 no.2
    • /
    • pp.39-47
    • /
    • 2018
  • Styrene-butadiene rubber (SBR) is widely used in tire treads due to its excellent abrasion resistance, braking performance, and reasonable cost. Depending on the polymerization method, SBR is classified into solution-polymerized SBR (SSBR) and emulsion-polymerized SBR (ESBR). ESBR is less expensive and environmentally friendlier than SSBR because it uses water as a solvent. A higher molecular weight is also easier to obtain in ESBR, which has advantages in mechanical properties and tire performance. In ESBR polymerization, a surfactant is added to create an emulsion system with a hydrophobic monomer in the water phase. However, some amount of surfactant remains in the ESBR during coagulation, making the polymer chains in micelles clump together. As a result, it is well-known that residual surfactant adversely affects the physical properties of silica-filled ESBR compounds. However, researches about the effect of residual surfactant on the physical properties of ESBR are lacking. Therefore, in this study we compared the effects of remaining surfactant in ESBR on the mechanical properties of silica-filled and carbon black-filled compounds. The crosslinking density and filler-rubber interaction are also analyzed by using the Flory-Rehner theory and Kraus equation. In addition, the effects of surfactant on the mechanical properties and crosslinking density are compared with the effects of TDAE oil (a conventional processing aid).

A vision-based system for dynamic displacement measurement of long-span bridges: algorithm and verification

  • Ye, X.W.;Ni, Y.Q.;Wai, T.T.;Wong, K.Y.;Zhang, X.M.;Xu, F.
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.363-379
    • /
    • 2013
  • Dynamic displacement of structures is an important index for in-service structural condition and behavior assessment, but accurate measurement of structural displacement for large-scale civil structures such as long-span bridges still remains as a challenging task. In this paper, a vision-based dynamic displacement measurement system with the use of digital image processing technology is developed, which is featured by its distinctive characteristics in non-contact, long-distance, and high-precision structural displacement measurement. The hardware of this system is mainly composed of a high-resolution industrial CCD (charge-coupled-device) digital camera and an extended-range zoom lens. Through continuously tracing and identifying a target on the structure, the structural displacement is derived through cross-correlation analysis between the predefined pattern and the captured digital images with the aid of a pattern matching algorithm. To validate the developed system, MTS tests of sinusoidal motions under different vibration frequencies and amplitudes and shaking table tests with different excitations (the El-Centro earthquake wave and a sinusoidal motion) are carried out. Additionally, in-situ verification experiments are performed to measure the mid-span vertical displacement of the suspension Tsing Ma Bridge in the operational condition and the cable-stayed Stonecutters Bridge during loading tests. The obtained results show that the developed system exhibits an excellent capability in real-time measurement of structural displacement and can serve as a good complement to the traditional sensors.

Physiological and Subjective Measures of Anxiety with Repeated Exposure to Virtual Construction Sites at Different Heights

  • Sachini N.K. Kodithuwakku Arachchige;Harish Chander;Alana J. Turner;Alireza Shojaei;Adam C. Knight;Aaron Griffith;Reuben F. Burch;Chih-Chia Chen
    • Safety and Health at Work
    • /
    • v.14 no.3
    • /
    • pp.303-308
    • /
    • 2023
  • Background: Occupational workers at altitudes are more prone to falls, leading to catastrophic outcomes. Acrophobia, height-related anxiety, and affected executive functions lead to postural instabilities, causing falls. This study investigated the effects of repeated virtual height exposure and training on cognitive processing and height-related anxiety. Methods: Twenty-eight healthy volunteers (age 20.48 ± 1.26 years; mass 69.52 ± 13.78 kg) were recruited and tested in seven virtual environments (VE) [ground (G), 2-story altitude (A1), 2-story edge (E1), 4-story altitude (A2), 4-story edge (E2), 6-story altitude (A3), and 6-story edge (E3)] over three days. At each VE, participants identified occupational hazards present in the VE and completed an Attitude Towards Heights Questionnaire (ATHQ) and a modified State-Trait Anxiety Inventory Questionnaire (mSTAIQ). The number of hazards identified and the ATHQ and mSTAIQ scores were analyzed using a 7 (VE; G, A1, A2, A3, E1, E2, E3) x 3 (DAY; DAY 1, DAY 2, DAY 3) factorial repeated measures analysis of variance. Results: The participants identified the lowest number of hazards at A3 and E3 VEs and on DAY 1 compared to other VEs and DAYs. ATHQ scores were lowest at G, A1, and E1 VEs. Conclusion: Cognitive processing is negatively affected by virtual altitudes, while it improves with short-term training. The features of virtual reality, such as higher involvement, engagement, and reliability, make it a better training tool to be considered in ergonomic settings. The findings of this study will provide insights into cognitive dual-tasking at altitude and its challenges, which will aid in minimizing occupational falls.

Development of a General Occupational Safety and Health (OSH) Guide for Maintenance in Etching, Deposition, and Ion Implantation Facilities (반도체 공정 설비 정비 작업 안전보건 가이드: 증착, 식각, 이온주입)

  • Kyung Ehi Zoh;Taek-hyeon Han;Jae-jin Moon;Ingyun Jung;Yeong Woo Hwang;Seyoung Kwon;Kyung-yoon Ko;Mingun Lee;Jaepil Chang;Dong-Uk Park
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.34 no.2
    • /
    • pp.125-133
    • /
    • 2024
  • Objectives: The aim of this study is to develop a comprehensive Occupational Safety and Health (OSH) guide for maintenance tasks in semiconductor processing, specifically focusing on etching, deposition, and ion implantation processes. Methods: The development of the OSH guide involved a literature review, consultations with industry experts, and field investigations. It concentrates on Maintenance Work (MW) operations in these specialized areas. Results: The result is a detailed OSH guide tailored to MW in etching, deposition, and ion implantation facilities within semiconductor processing. This guide is structured to assist maintenance workers through pre-, during and post-MW phases, ensuring easy comprehension and adherence to safety protocols. It highlights the necessity of safety and health measures throughout the MW process to protect personnel. The guide is enriched with real-life scenarios and visual aids, including cartoons and photographs, to aid in the understanding and implementation of safety and health principles. Conclusions: This OSH guide is designed to enhance the protection of workers engaged in maintenance activities in the electronics sector, particularly in semiconductor manufacturing. It aims to improve compliance with safety and health standards in these high-risk environments.

Development of Digital Therapeutics Mobile Application for Panic Disorder Care (공황장애 케어를 위한 디지털 치료제 어플리케이션 개발)

  • Juhee Yoon;Dong-Keun Kim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.7
    • /
    • pp.319-325
    • /
    • 2024
  • This study aims to develop a mobile application for the care of panic disorder, assisting in the prevention of panic attacks and the management of symptoms. Panic disorder is a psychological condition characterized by persistent fear, anxiety, and panic attacks, which requires appropriate treatment and management. The increasing need for digital therapeutics that users can access without time and space constraints is evident. The application developed through this research provides basic knowledge about panic disorder, enables self-diagnosis to monitor one's condition, and offers various therapeutic methods to effectively aid in the care of panic disorder. Additionally, it provides notifications based on real-time user location when they reach places where they have previously experienced panic attacks, and offers personalized support. This digital therapeutic aims to introduce new tools and treatment methods beyond traditional therapies. Furthermore, it is expected to contribute positively by promoting the use of digital therapeutics not only for panic disorder but also across the entire field of mental health, thereby improving users' quality of life.

Design of a High Dynamic-Range RF ASIC for Anti-jamming GNSS Receiver

  • Kim, Heung-Su;Kim, Byeong-Gyun;Moon, Sung-Wook;Kim, Se-Hwan;Jung, Seung Hwan;Kim, Sang Gyun;Eo, Yun Seong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.3
    • /
    • pp.115-122
    • /
    • 2015
  • Global Positioning System (GPS) is used in various fields such as communications systems, transportation systems, e-commerce, power plant systems, and up to various military weapons systems recently. However, GPS receiver is vulnerable to jamming signals as the GPS signals come from the satellites located at approximately 20,000 km above the earth. For this reason, various anti-jamming techniques have been developed for military application systems especially and it is also required for commercial application systems nowadays. In this paper, we proposed a dual-channel Global Navigation Satellite System (GNSS) RF ASIC for digital pre-correlation anti-jam technique. It not only covers all GNSS frequency bands, but is integrated low-gain/attenuation mode in low-noise amplifier (LNA) without influencing in/out matching and 14-bit analogdigital converter (ADC) to have a high dynamic range. With the aid of digital processing, jamming to signal ratio is improved to 77 dB from 42 dB with proposed receiver. RF ASIC for anti-jam is fabricated on a 0.18-μm complementary metal-oxide semiconductor (CMOS) technology and consumes 1.16 W with 2.1 V (low-dropout; LDO) power supply. And the performance is evaluated by a kind of test hardware using the designed RF ASIC.

Texture Characteristics of Horse Meat for the Elderly Based on the Enzyme Treatment

  • Kim, Dah-Sol;Joo, Nami
    • Food Science of Animal Resources
    • /
    • v.40 no.1
    • /
    • pp.74-86
    • /
    • 2020
  • Horse meat is nutritionally adequate to the elderly, but it has a comparatively hard texture in contrast to most of the food. In practice, the meat intake in the elderly is generally bated because the relatively difficult texture of the meat can diminish mastication. Thus, strategies are being developed to produce meat products remanding detracted mastication exertion and possibly exalt ingestion and nutritional stand, in the elderly. Hence, the effects of enzymes on textural characteristics of horse meat were studied, because they have well-known favorable efficacy on the meat tenderness by causing important demotion of the myo-fibrillar protein and collagen. Four treatments namely, papain, bromelin, pepsin, and pancreatin, alongside one control were invoked to the horse meat. Their effects on the texture parameters were determined. All the above enzymatic treatments significantly reduced hardness and resilience (p<0.001). These results present opportunities to produce essential fatty acids fortified horse meat with soft texture and satisfied technological characteristics. The intake of the essential fatty acids intensified horse meat could aid the elderly to get their aimed essential fatty acid demands. Results also suggest that horse meat tenderized through enzymatic processing stand for auspicious options for the comprehension of texture-revised diets in the elderly population.

Design of Black Plastics Classifier Using Data Information (데이터 정보를 이용한 흑색 플라스틱 분류기 설계)

  • Park, Sang-Beom;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.569-577
    • /
    • 2018
  • In this paper, with the aid of information which is included within data, preprocessing algorithm-based black plastic classifier is designed. The slope and area of spectrum obtained by using laser induced breakdown spectroscopy(LIBS) are analyzed for each material and its ensuing information is applied as the input data of the proposed classifier. The slope is represented by the rate of change of wavelength and intensity. Also, the area is calculated by the wavelength of the spectrum peak where the material property of chemical elements such as carbon and hydrogen appears. Using informations such as slope and area, input data of the proposed classifier is constructed. In the preprocessing part of the classifier, Principal Component Analysis(PCA) and fuzzy transform are used for dimensional reduction from high dimensional input variables to low dimensional input variables. Characteristic analysis of the materials as well as the processing speed of the classifier is improved. In the condition part, FCM clustering is applied and linear function is used as connection weight in the conclusion part. By means of Particle Swarm Optimization(PSO), parameters such as the number of clusters, fuzzification coefficient and the number of input variables are optimized. To demonstrate the superiority of classification performance, classification rate is compared by using WEKA 3.8 data mining software which contains various classifiers such as Naivebayes, SVM and Multilayer perceptron.

A Study on Verification and Editing of NC Part-program (NC파트프로그램의 검증 및 오류 수정에 관한 연구)

  • 김찬봉;박세형;양민양
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1074-1083
    • /
    • 1993
  • NC simulation has been used to replace the test cutting of NC machining. Although it can reduce the NC part programming effort, it still has a problem. If any error is found during the simulation, then the part has to be reprogrammed and it is time consumming. This paper presents a method for verifying and editing the NC code after the post-processing without going back to the part programming stage. A data structure and an algorithm to verify and edit the NC code interactively with the aid of graphics is introduced. Z-map method is used for the shaded image display and cross-sectional view display of the macined parts. The method was implemented in a IBM/PC-386 with MS-Windows software, and the multi-window function of the of the MS-Windows is used for the simultaneous editing and verification.

Development of an EMG-based Wireless and Wearable Computer Interlace (근전도기반의 무선 착용형 컴퓨터 인터페이스 개발)

  • Han, Hyo-Nyoung;Choi, Chang-Mok;Lee, Yun-Joo;Ha, Sung-Do;Kim, Jung
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.240-244
    • /
    • 2008
  • This paper presents an EMG-based wireless and wearable computer interface. The wearable device contains 4 channel EMG sensors and is able to acquire EMG signals using signal processing. Obtained signals are transmitted to a host computer through wireless communication. EMG signals induced by the volitional movements are acquired from four sites in the lower limb to extract a user's intention and six classes of wrist movements are discriminated by employing an artificial neural network (ANN). This interface could provide an aid to the limb disabled to directly access to computers and network environments without conventional computer interface such as a keyboard and a mouse.

  • PDF