• Title/Summary/Keyword: processing

Search Result 68,998, Processing Time 0.101 seconds

Research on ITB Contract Terms Classification Model for Risk Management in EPC Projects: Deep Learning-Based PLM Ensemble Techniques (EPC 프로젝트의 위험 관리를 위한 ITB 문서 조항 분류 모델 연구: 딥러닝 기반 PLM 앙상블 기법 활용)

  • Hyunsang Lee;Wonseok Lee;Bogeun Jo;Heejun Lee;Sangjin Oh;Sangwoo You;Maru Nam;Hyunsik Lee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.11
    • /
    • pp.471-480
    • /
    • 2023
  • The Korean construction order volume in South Korea grew significantly from 91.3 trillion won in public orders in 2013 to a total of 212 trillion won in 2021, particularly in the private sector. As the size of the domestic and overseas markets grew, the scale and complexity of EPC (Engineering, Procurement, Construction) projects increased, and risk management of project management and ITB (Invitation to Bid) documents became a critical issue. The time granted to actual construction companies in the bidding process following the EPC project award is not only limited, but also extremely challenging to review all the risk terms in the ITB document due to manpower and cost issues. Previous research attempted to categorize the risk terms in EPC contract documents and detect them based on AI, but there were limitations to practical use due to problems related to data, such as the limit of labeled data utilization and class imbalance. Therefore, this study aims to develop an AI model that can categorize the contract terms based on the FIDIC Yellow 2017(Federation Internationale Des Ingenieurs-Conseils Contract terms) standard in detail, rather than defining and classifying risk terms like previous research. A multi-text classification function is necessary because the contract terms that need to be reviewed in detail may vary depending on the scale and type of the project. To enhance the performance of the multi-text classification model, we developed the ELECTRA PLM (Pre-trained Language Model) capable of efficiently learning the context of text data from the pre-training stage, and conducted a four-step experiment to validate the performance of the model. As a result, the ensemble version of the self-developed ITB-ELECTRA model and Legal-BERT achieved the best performance with a weighted average F1-Score of 76% in the classification of 57 contract terms.

Action effect: An attentional boost of action regardless of medium and semantics (의미적 표상 및 매개체와 무관한 단순 행동의 주의력 증진 효과)

  • Dogyun Kim;Eunhee Ji;Min-Shik Kim
    • Korean Journal of Cognitive Science
    • /
    • v.34 no.3
    • /
    • pp.153-180
    • /
    • 2023
  • Previous research on the action effect had shown how simple action towards a stimulus can enhance the processing of that stimulus in subsequent visual search task (Buttaccio & Hahn, 2011; Weidler & Abrams, 2014). In four experiments, we investigated whether semantic representation of action word can induce the same attentional boost towards that stimulus and whether the type of action performed can modulate the action effect. In experiment 1, we replicated the same experimental paradigm displayed in previous studies. Participants were first shown an action word cue - "go" or "no". When the action cue was "go", participants were to press a designated key, but not to when the action cue was "no". Next, participants performed a visual search task, in which they reported the orientation of a tilted bar. The target could appear on top of the previously shown prime object (valid), or not (invalid). Reaction times (RTs) to the search task were measure for analysis and comparison, and the action effect had been replicated. In experiment 2, participants were instructed to respond with the keyboard for the action task, and to respond with the joystick for the visual search task. In experiment 3, participants were instructed not to press any key on the onset of prime, and then perform the visual search task to isolate the effect of semantic representation. Lastly, in experiment 4, participants were instructed to press separate keys for "go" and "no" on the onset of prime, and then perform the visual search task. Results indicate that semantic representation alone did not modulate the action effect, regardless of type of action and medium of action.

Estimation of Rice Heading Date of Paddy Rice from Slanted and Top-view Images Using Deep Learning Classification Model (딥 러닝 분류 모델을 이용한 직하방과 경사각 영상 기반의 벼 출수기 판별)

  • Hyeok-jin Bak;Wan-Gyu Sang;Sungyul Chang;Dongwon Kwon;Woo-jin Im;Ji-hyeon Lee;Nam-jin Chung;Jung-Il Cho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.337-345
    • /
    • 2023
  • Estimating the rice heading date is one of the most crucial agricultural tasks related to productivity. However, due to abnormal climates around the world, it is becoming increasingly challenging to estimate the rice heading date. Therefore, a more objective classification method for estimating the rice heading date is needed than the existing methods. This study, we aimed to classify the rice heading stage from various images using a CNN classification model. We collected top-view images taken from a drone and a phenotyping tower, as well as slanted-view images captured with a RGB camera. The collected images underwent preprocessing to prepare them as input data for the CNN model. The CNN architectures employed were ResNet50, InceptionV3, and VGG19, which are commonly used in image classification models. The accuracy of the models all showed an accuracy of 0.98 or higher regardless of each architecture and type of image. We also used Grad-CAM to visually check which features of the image the model looked at and classified. Then verified our model accurately measure the rice heading date in paddy fields. The rice heading date was estimated to be approximately one day apart on average in the four paddy fields. This method suggests that the water head can be estimated automatically and quantitatively when estimating the rice heading date from various paddy field monitoring images.

Application of Remote Sensing Techniques to Survey and Estimate the Standing-Stock of Floating Debris in the Upper Daecheong Lake (원격탐사 기법 적용을 통한 대청호 상류 유입 부유쓰레기 조사 및 현존량 추정 연구)

  • Youngmin Kim;Seon Woong Jang ;Heung-Min Kim;Tak-Young Kim;Suho Bak
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.589-597
    • /
    • 2023
  • Floating debris in large quantities from land during heavy rainfall has adverse social, economic, and environmental impacts, but the monitoring system for the concentration area and amount is insufficient. In this study, we proposed an efficient monitoring method for floating debris entering the river during heavy rainfall in Daecheong Lake, the largest water supply source in the central region, and applied remote sensing techniques to estimate the standing-stock of floating debris. To investigate the status of floating debris in the upper of Daecheong Lake, we used a tracking buoy equipped with a low-orbit satellite communication terminal to identify the movement route and behavior characteristics, and used a drone to estimate the potential concentration area and standing-stock of floating debris. The location tracking buoys moved rapidly during the period when the cumulative rainfall for 3 days increased by more than 200 to 300 mm. In the case of Hotan Bridge, which showed the longest distance, it moved about 72.8 km for one day, and the maximum moving speed at this time was 5.71 km/h. As a result of calculating the standing-stock of floating debris using a drone after heavy rainfall, it was found to be 658.8 to 9,165.4 tons, with the largest amount occurring in the Seokhori area. In this study, we were able to identify the main concentrations of floating debris by using location-tracking buoys and drones. It is believed that remote sensing-based monitoring methods, which are more mobile and quicker than traditional monitoring methods, can contribute to reducing the cost of collecting and processing large amounts of floating debris that flows in during heavy rain periods in the future.

Gridding of Automatic Mountain Meteorology Observation Station (AMOS) Temperature Data Using Optimal Kriging with Lapse Rate Correction (기온감률 보정과 최적크리깅을 이용한 산악기상관측망 기온자료의 우리나라 500미터 격자화)

  • Youjeong Youn;Seoyeon Kim;Jonggu Kang;Yemin Jeong;Soyeon Choi;Yungyo Im;Youngmin Seo;Myoungsoo Won;Junghwa Chun;Kyungmin Kim;Keunchang Jang;Joongbin Lim;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.715-727
    • /
    • 2023
  • To provide detailed and appropriate meteorological information in mountainous areas, the Korea Forest Service has established an Automatic Mountain Meteorology Observation Station (AMOS) network in major mountainous regions since 2012, and 464 stations are currently operated. In this study, we proposed an optimal kriging technique with lapse rate correction to produce gridded temperature data suitable for Korean forests using AMOS point observations. First, the outliers of the AMOS temperature data were removed through statistical processing. Then, an optimized theoretical variogram, which best approximates the empirical variogram, was derived to perform the optimal kriging with lapse rate correction. A 500-meter resolution Kriging map for temperature was created to reflect the elevation variations in Korean mountainous terrain. A blind evaluation of the method using a spatially unbiased validation sample showed a correlation coefficient of 0.899 to 0.953 and an error of 0.933 to 1.230℃, indicating a slight accuracy improvement compared to regular kriging without lapse rate correction. However, the critical advantage of the proposed method is that it can appropriately represent the complex terrain of Korean forests, such as local variations in mountainous areas and coastal forests in Gangwon province and topographical differences in Jirisan and Naejangsan and their surrounding forests.

Effect of Accelerated Storage on the Microstructure and Water Absorption Characteristics of Korean Adzuki Bean (Vigna angularis L.) Cultivar (팥의 가속화 저장에 따른 미세구조 및 수분흡수 특성)

  • Jieun Kwak;Seon-Min Oh;You-Geun Oh;Yu-Chan Choi;Hyun-Jin Park;Suk-Bo Song;Jeong-Heui Lee;Jeom-Sig Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.3
    • /
    • pp.167-174
    • /
    • 2023
  • This study investigated the microstructure and water absorption characteristics of the Korean adzuki bean (Vigna angularis L.) cultivar under accelerated storage. The germination rate, acid value, redness (a*), and yellowness (b*) values showed no significant differences after three months of storage compared to pre-storage under low temperatures (4℃). However, a statistically significant difference was observed under accelerated high temperatures (45℃). In particular, after storage for three months, the germination rate and acid value were 0% and 33.63 mg KOH/100g, respectively, under accelerated high temperatures. After storage for three months, the holes, hilum damage, and spaces between the seed coat and cotyledon shortened the time and speed of water absorption under accelerated high temperatures compared to that under low temperatures. Conversely, further research is required to investigate the reason for the low rate of parallel water absorption.

Derivation of Inherent Optical Properties Based on Deep Neural Network (심층신경망 기반의 해수 고유광특성 도출)

  • Hyeong-Tak Lee;Hey-Min Choi;Min-Kyu Kim;Suk Yoon;Kwang-Seok Kim;Jeong-Eon Moon;Hee-Jeong Han;Young-Je Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.695-713
    • /
    • 2023
  • In coastal waters, phytoplankton,suspended particulate matter, and dissolved organic matter intricately and nonlinearly alter the reflectivity of seawater. Neural network technology, which has been rapidly advancing recently, offers the advantage of effectively representing complex nonlinear relationships. In previous studies, a three-stage neural network was constructed to extract the inherent optical properties of each component. However, this study proposes an algorithm that directly employs a deep neural network. The dataset used in this study consists of synthetic data provided by the International Ocean Color Coordination Group, with the input data comprising above-surface remote-sensing reflectance at nine different wavelengths. We derived inherent optical properties using this dataset based on a deep neural network. To evaluate performance, we compared it with a quasi-analytical algorithm and analyzed the impact of log transformation on the performance of the deep neural network algorithm in relation to data distribution. As a result, we found that the deep neural network algorithm accurately estimated the inherent optical properties except for the absorption coefficient of suspended particulate matter (R2 greater than or equal to 0.9) and successfully separated the sum of the absorption coefficient of suspended particulate matter and dissolved organic matter into the absorption coefficient of suspended particulate matter and dissolved organic matter, respectively. We also observed that the algorithm, when directly applied without log transformation of the data, showed little difference in performance. To effectively apply the findings of this study to ocean color data processing, further research is needed to perform learning using field data and additional datasets from various marine regions, compare and analyze empirical and semi-analytical methods, and appropriately assess the strengths and weaknesses of each algorithm.

Estimation of Chlorophyll Contents in Pear Tree Using Unmanned AerialVehicle-Based-Hyperspectral Imagery (무인기 기반 초분광영상을 이용한 배나무 엽록소 함량 추정)

  • Ye Seong Kang;Ki Su Park;Eun Li Kim;Jong Chan Jeong;Chan Seok Ryu;Jung Gun Cho
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.669-681
    • /
    • 2023
  • Studies have tried to apply remote sensing technology, a non-destructive survey method, instead of the existing destructive survey, which requires relatively large labor input and a long time to estimate chlorophyll content, which is an important indicator for evaluating the growth of fruit trees. This study was conducted to non-destructively evaluate the chlorophyll content of pear tree leaves using unmanned aerial vehicle-based hyperspectral imagery for two years(2021, 2022). The reflectance of the single bands of the pear tree canopy extracted through image processing was band rationed to minimize unstable radiation effects depending on time changes. The estimation (calibration and validation) models were developed using machine learning algorithms of elastic-net, k-nearest neighbors(KNN), and support vector machine with band ratios as input variables. By comparing the performance of estimation models based on full band ratios, key band ratios that are advantageous for reducing computational costs and improving reproducibility were selected. As a result, for all machine learning models, when calibration of coefficient of determination (R2)≥0.67, root mean squared error (RMSE)≤1.22 ㎍/cm2, relative error (RE)≤17.9% and validation of R2≥0.56, RMSE≤1.41 ㎍/cm2, RE≤20.7% using full band ratios were compared, four key band ratios were selected. There was relatively no significant difference in validation performance between machine learning models. Therefore, the KNN model with the highest calibration performance was used as the standard, and its key band ratios were 710/714, 718/722, 754/758, and 758/762 nm. The performance of calibration showed R2=0.80, RMSE=0.94 ㎍/cm2, RE=13.9%, and validation showed R2=0.57, RMSE=1.40 ㎍/cm2, RE=20.5%. Although the performance results based on validation were not sufficient to estimate the chlorophyll content of pear tree leaves, it is meaningful that key band ratios were selected as a standard for future research. To improve estimation performance, it is necessary to continuously secure additional datasets and improve the estimation model by reproducing it in actual orchards. In future research, it is necessary to continuously secure additional datasets to improve estimation performance, verify the reliability of the selected key band ratios, and upgrade the estimation model to be reproducible in actual orchards.

Evaluation of Application Possibility for Floating Marine Pollutants Detection Using Image Enhancement Techniques: A Case Study for Thin Oil Film on the Sea Surface (영상 강화 기법을 통한 부유성 해양오염물질 탐지 기술 적용 가능성 평가: 해수면의 얇은 유막을 대상으로)

  • Soyeong Jang;Yeongbin Park;Jaeyeop Kwon;Sangheon Lee;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1353-1369
    • /
    • 2023
  • In the event of a disaster accident at sea, the scale of damage will vary due to weather effects such as wind, currents, and tidal waves, and it is obligatory to minimize the scale of damage by establishing appropriate control plans through quick on-site identification. In particular, it is difficult to identify pollutants that exist in a thin film at sea surface due to their relatively low viscosity and surface tension among pollutants discharged into the sea. Therefore, this study aims to develop an algorithm to detect suspended pollutants on the sea surface in RGB images using imaging equipment that can be easily used in the field, and to evaluate the performance of the algorithm using input data obtained from actual waters. The developed algorithm uses image enhancement techniques to improve the contrast between the intensity values of pollutants and general sea surfaces, and through histogram analysis, the background threshold is found,suspended solids other than pollutants are removed, and finally pollutants are classified. In this study, a real sea test using substitute materials was performed to evaluate the performance of the developed algorithm, and most of the suspended marine pollutants were detected, but the false detection area occurred in places with strong waves. However, the detection results are about three times better than the detection method using a single threshold in the existing algorithm. Through the results of this R&D, it is expected to be useful for on-site control response activities by detecting suspended marine pollutants that were difficult to identify with the naked eye at existing sites.

The Effect of Consumption Value and Consumers' Need for Cognition on Satisfaction through the Mediating Role of Trust in Online Shopping Websites (소비가치와 소비자의 인지욕구가 온라인 쇼핑 웹사이트에 대한 신뢰성을 매개로 만족도에 미치는 영향)

  • Lee, Yun-sun
    • Journal of Venture Innovation
    • /
    • v.6 no.4
    • /
    • pp.99-111
    • /
    • 2023
  • This study aims to confirm that consumers' satisfaction with online shopping websites has changed to a phenomenon different from the past. In other words, in a situation where the use of e-commerce is expanding worldwide after the pandemic and various types of commerce such as mobile commerce and social commerce are formed, the consumer's information processing and decision-making process are meaningful in examining the behavior that has been changed based on the perceived motivation level of consumers by the new environment according to the consumption value and personal characteristics perceived by the consumer. In other words, the purpose of this study was to investigate the effect of consumption value and need for cognition on the satisfaction toward online websites as a mediating role in the trust of the website. As a result of testing Hypothesis 1, not only the hedonic value of the consumer for the website but also the utilitarian value had a positive influence on the satisfaction toward the website, and in particular, the utilitarian value showed a relatively greater influence than the hedonic value. However, the negative relationship between the need for cognition and satisfaction was found to be at a significant level under one-sided verification. In Hypothesis 2, only the utilitarian value among the consumption values of 2-1 showed a positive effect on satisfaction through a mediating role of trust. It was confirmed that the utilitarian value among the consumption values was an important factor in the satisfaction toward the website. The significance of this study is that, unlike previous research results, not only consumption value based on senses and emotions but also utilitarian value has a greater influence. Therefore, utilitarian value and need for cognition have a stronger influence on satisfaction if they play a mediating role based on the trust of the website used by consumers. These findings reflect the current market trend of online consumption, and they are helpful in the management and strategy of online websites based on consumer behavior understanding and major factors.