• Title/Summary/Keyword: process variable

Search Result 2,718, Processing Time 0.036 seconds

Modeling of flexible disk grinding process for automation of hand-grinding (수동연삭공정 자동화를 위한 유연성 디스크가공 모델링)

  • Yoo, Song-Min;Kim, Young-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.4
    • /
    • pp.376-383
    • /
    • 2000
  • A flexible disk grinding process model has been implemented with varying disk orientation with respect to workpiece surface along with variable feed rate. Before implementing arbitrary disk orientation and translation, disk angle and feed rate variation have been implemented. The disk angle was changed with constant angular velocity only in the entrance stage. The effect of the variable feed rate was added to the geometric schematic. The feed rate was changed either from the entrance stage or from the between edges stage and process performance was evaluated. Effect of changing both angle end feed rate has been also analyzed. Disk trend showing actual disk deflection has also been visualized.

  • PDF

Feasibility Study of Hierarchical Kriging Model in the Design Optimization Process (계층적 크리깅 모델을 이용한 설계 최적화 기법의 유용성 검증)

  • Ha, Honggeun;Oh, Sejong;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.108-118
    • /
    • 2014
  • On the optimization design problem using surrogate model, it requires considerable number of sampling points to construct a surrogate model which retains the accuracy. As an alternative to reduce construction cost of the surrogate model, Variable-Fidelity Modeling(VFM) technique, where correct high fidelity model based on the low fidelity surrogate model is introduced. In this study, hierarchical kriging model for variable-fidelity surrogate modeling is used and an optimization framework with multi-objective genetic algorithm(MOGA) is presented. To prove the feasibility of this framework, airfoil design optimization process is performed for the transonic region. The parameters of PARSEC are used to design variables and the optimization process is performed in case of varying number of grid and varying fidelity. The results showed that pareto front of all variable-fidelity models are similar with its single-level of fidelity model and calculation time is considerably reduced. Based on computational results, it is shown that VFM is a more efficient way and has an accuracy as high as that single-level of fidelity model optimization.

Effect of Different Variable Selection and Estimation Methods on Performance of Fault Diagnosis (이상진단 성능에 미치는 변수선택과 추정방법의 영향)

  • Cho, Hyun-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.551-557
    • /
    • 2019
  • Diagnosis of abnormal faults is essential for producing high quality products. The role of real-time diagnosis is quite increasing in the batch processes of producing high value-added products such as semiconductors, pharmaceuticals, and so forth. In this study, we evaluate the effect of variable selection and future-value estimation techniques on the performance of the diagnosis system, which is based on nonlinear classification and measurement data. The diagnostic performance can be improved by selecting only the variables that are important and have high contribution for diagnosis. Thus, the diagnostic performance of several variable selection techniques is compared and evaluated. In addition, missing data of a new batch, called future observations, should be estimated because the full data of a new batch is not available before the end of the cycle. In this work the use of different estimation techniques is analyzed. A case study on the polyvinyl chloride batch process was carried out so that optimal variable selection and estimation methods were obtained: maximum 21.9% and 13.3% improvement by variable selection and maximum 25.8% and 15.2% improvement by estimation methods.

The Design of Knockout Switch Structure For Improving Performance of Inter- Processor Communication in Mobile Communication System. (이동통신시스템의 프로세서간 통신성능향상을 위한 넉아웃 스위치의 구조설계)

  • Park, Sang-Gyu;Kim, Jae-Hong;Lee, Sang-Jo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.7
    • /
    • pp.1868-1879
    • /
    • 1996
  • There are limitations to process high bandwidth traffic in B-ISDN with mesh- topology single bus architecture of current mobile communication system. And, it is impossible to import ATM switch using fixed length packet rather than variable length packet. Some implementations are able to process variable length packet, but there are some problems such as pre-processing for synchronization and bit delay. In this paper, we design a concentrator that can manipulate variable length packet without additional pre-process. There is on bit delay for packet starting signal in input interface, So it is more efficient to process packets, such that the concentrator can reduce he processing time as $\ulcornerlog2N\lrcorne+1$ bit-time rather than N bit-time delay in ordinary concentrator. It is expected that the mobile communication system with partial mesh topology bus adopting the knockout switch architecture can process high bandwidth traffic in B-ISDN.

  • PDF

A Study on the Overlay Welding Process Optimization of GTAW by Double Torch (GTAW Double Torch의 육성용접 공정최적화에 관한 연구)

  • Lim, Byung-Chul;Son, Young-San
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.73-78
    • /
    • 2016
  • In this study, GTAW was carried out on austenitic STS316 stainless steel. Overlay welding with the stellite-base filler metal was implemented using a double torch. The response variable was calculated on the measured Vickers hardness for process optimization using the Taguchi method and its response variable was then analyzed about effect on overlay welding characteristics. The optimal process design by the Taguchi method is extremely effective in the overlay welding process for the multiple response variables. In addition, the effects of contribution rate about each response variable was analyzed easily. The conditions of the optimal process were 105A, 18V, pre-heat treatment at $200^{\circ}C$, and post weld heat treatment at $100^{\circ}C$. The Vickers hardness of the specimens produced under the optimal condition of GTAW by the double torch was 8.19% higher than that by a single torch.

Gradient Descent Training Method for Optimizing Data Prediction Models (데이터 예측 모델 최적화를 위한 경사하강법 교육 방법)

  • Hur, Kyeong
    • Journal of Practical Engineering Education
    • /
    • v.14 no.2
    • /
    • pp.305-312
    • /
    • 2022
  • In this paper, we focused on training to create and optimize a basic data prediction model. And we proposed a gradient descent training method of machine learning that is widely used to optimize data prediction models. It visually shows the entire operation process of gradient descent used in the process of optimizing parameter values required for data prediction models by applying the differential method and teaches the effective use of mathematical differentiation in machine learning. In order to visually explain the entire operation process of gradient descent, we implement gradient descent SW in a spreadsheet. In this paper, first, a two-variable gradient descent training method is presented, and the accuracy of the two-variable data prediction model is verified by comparison with the error least squares method. Second, a three-variable gradient descent training method is presented and the accuracy of a three-variable data prediction model is verified. Afterwards, the direction of the optimization practice for gradient descent was presented, and the educational effect of the proposed gradient descent method was analyzed through the results of satisfaction with education for non-majors.

Investigation Into the Manufacture of 3D Functional Parts using VLM-ST and Its Applied Technology (발포폴리스티렌 폼을 이용한 단속형 가변적층 쾌속조형공정과 응용기술을 이용한 3차원 기능성 제품 제작에 관한 연구)

  • Ahn D. C.;Lee S. H.;Choi H. S.;Kim K. D.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.190-194
    • /
    • 2001
  • The integration of rapid prototyping and tooling has the potential for the rapid net shape manufacturing of three-dimensional parts with geometrical complexity. In this study, a new rapid prototyping process, transfer type of Variable Lamination Manufacturing (VLM-ST), was proposed to manufacture net shape of 3-D prototypes. In order to examine the efficiency and applicability of the proposed process, various 3-D parts, such as a world-cup logo, and extruded cross and a knob shape, were fabricated on the apparatus. In addition, the new rapid tooling process, which is a triple reverse process, was proposed to manufacture of 3-D functional part using VLM-ST prototypes and the plastic part of the knob shape was produced by the new rapid tooling process.

  • PDF

Improvement of the Stamping Formability by BHF Control (블랭크 홀딩력 제어에 의한 스탬핑 가공성 향상 기술)

  • 김영석;임성언;손형성;한수식
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.269-275
    • /
    • 1999
  • A variable blank holding force method is proposed to improve deep drawing characteristics of sheet materials. In this method, the blank holding force (BHF) is controlled throughout a drawing process so that the punch load does not exceed a critical value, which is slightly less than the conventional process with the conforming process with the variable BHF is more flexible than the conventional process with the constant BHF and it could be used for improving the product's quality and drawability. In this paper we suggest a method controlling the BHF as a function of punch travel during the forming process. The optimization BHF curves are determined theoretically and experimentally. It is concluded that for the case of optimum BHF control methods the drawn cup height and the drawing formability achieved by this method are increased than those for constant BHF method. Also, as comparing the wall thickness distribution of the cup drawn by the constant BHF and the optimum BHF control, the BHF control reduce the wall thickness variation of the drawn cup at the cup wall and make the cup thickness distribution more uniformly than the constant BHF.

  • PDF

Thermally-Expandable Molding Process for Thermoset Composite Materials (열팽창 치공구를 이용한 열경화성 복합재료의 성형연구)

  • 이준호;금성우;장원영;남재도
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.690-700
    • /
    • 2000
  • In this study, an elastomer-assistered compression molding process was investigated by experiments as well as modeling for the long-fiber reinforced thermoset composites. The consolidation pressure generated by fixed-volume and variable-volume conditions was thermodynamically derived for both elastomer and curing prepregs, and was compared with the pressure measured during curing of epoxy matrix. Exhibiting non-linear viscoelastic characteristics in the compressive stress-strain tests, the measured stress was well compared with a modifed KWW (Kohlrausch-Williame-Watts) equation, which is based on the Maxwell viscoelastic model. Using the developed model equations, the consolidation pressure generated by the elastomer was successfully predicted for the compression molding process of thermoset composite materials in tile closed mold system.

  • PDF

Fault Detection & SPC of Batch Process using Multi-way Regression Method (다축-다변량회귀분석 기법을 이용한 회분식 공정의 이상감지 및 통계적 제어 방법)

  • Woo, Kyoung Sup;Lee, Chang Jun;Han, Kyoung Hoon;Ko, Jae Wook;Yoon, En Sup
    • Korean Chemical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.32-38
    • /
    • 2007
  • A batch Process has a multi-way data structure that consists of batch-time-variable axis, so the statistical modeling of a batch process is a difficult and challenging issue to the process engineers. In this study, We applied a statistical process control technique to the general batch process data, and implemented a fault-detection and Statistical process control system that was able to detect, identify and diagnose the fault. Semiconductor etch process and semi-batch styrene-butadiene rubber process data are used to case study. Before the modeling, we pre-processed the data using the multi-way unfolding technique to decompose the data structure. Multivariate regression techniques like support vector regression and partial least squares were used to identify the relation between the process variables and process condition. Finally, we constructed the root mean squared error chart and variable contribution chart to diagnose the faults.