• Title/Summary/Keyword: process variability

Search Result 452, Processing Time 0.027 seconds

Perspectives on Noise Issues Arising from the Introduction of Urban Air Mobility (UAM) -Characteristics and Potential Health Effects of UAM Noise: Research Directions and Policy Considerations- (도심환경교통(Urban Air Mobility, UAM) 도입에 따른 소음 문제에 대한 시론 -UAM 소음의 특성과 잠재적 건강영향: 연구 방향 및 관리를 위한 정책적 고려사항-)

  • Seunghon Ham
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.2
    • /
    • pp.81-82
    • /
    • 2024
  • Urban air mobility (UAM) is emerging as an innovative transportation solution for cities. However, the potential noise impact on urban life must be carefully examined. Continuous exposure to UAM noise, with its unique frequency characteristics and temporal variability, may adversely affect citizens' health by causing sleep disorders, cardiovascular disease, and cognitive impairmenet, particularly in children. NASA has formed a UAM Noise Working Group to study this issue comprehensively. In Korea, the Seoul Metropolitan Government's UAM demonstration project is expected to accelerate related research and development. Scientific analysis, including noise measurement, prediction modeling, and health impact assessment, must be prioritized. Measures to minimize noise should be established based on this evidence, such as optimizing flight modes, developing noise reduction technologies, and establishing new noise management standards. Transparency and social consensus are crucial throughout this process. Expert review and open communication with civil society are necessary to address related concerns. Sharing demonstration project results and providing opportunities to experience UAM noise through digital twin simulations can help address public concerns and build social consensus. Proactively and scientifically tackling noise issues is essential for the sustainable development and successful integration of UAM into daily life.

Determination and Variation of Core Bacterial Community in a Two-Stage Full-Scale Anaerobic Reactor Treating High-Strength Pharmaceutical Wastewater

  • Ma, Haijun;Ye, Lin;Hu, Haidong;Zhang, Lulu;Ding, Lili;Ren, Hongqiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.10
    • /
    • pp.1808-1819
    • /
    • 2017
  • Knowledge on the functional characteristics and temporal variation of anaerobic bacterial populations is important for better understanding of the microbial process of two-stage anaerobic reactors. However, owing to the high diversity of anaerobic bacteria, close attention should be prioritized to the frequently abundant bacteria that were defined as core bacteria and putatively functionally important. In this study, using MiSeq sequencing technology, the core bacterial community of 98 operational taxonomic units (OTUs) was determined in a two-stage upflow blanket filter reactor treating pharmaceutical wastewater. The core bacterial community accounted for 61.66% of the total sequences and accurately predicted the sample location in the principal coordinates analysis scatter plot as the total bacterial OTUs did. The core bacterial community in the first-stage (FS) and second-stage (SS) reactors were generally distinct, in that the FS core bacterial community was indicated to be more related to a higher-level fermentation process, and the SS core bacterial community contained more microbes in syntrophic cooperation with methanogens. Moreover, the different responses of the FS and SS core bacterial communities to the temperature shock and influent disturbance caused by solid contamination were fully investigated. Co-occurring analysis at the Order level implied that Bacteroidales, Selenomonadales, Anaerolineales, Syneristales, and Thermotogales might play key roles in anaerobic digestion due to their high abundance and tight correlation with other microbes. These findings advance our knowledge about the core bacterial community and its temporal variability for future comparative research and improvement of the two-stage anaerobic system operation.

Taxonomy on Canthocamptus semicirculus and C. coreensis n. sp.(Harpacticoida, Canthocarnptidae), with a Key to the C. mirabilis Species Group from South Korea (딱정 장수노벌레속(갈고리노벌레목, 딱정장수노벌레과) mirabilis 종군에 속하는 1신종 1기록종의 분류학적 연구)

  • Chang, Cheon-Young
    • Animal Systematics, Evolution and Diversity
    • /
    • v.18 no.2
    • /
    • pp.233-244
    • /
    • 2002
  • As one of the serial studies on the taxonomy of Conthocamptus mirabilis species group in South Korea, C. semicirculus Kikuchi, widely distributed in the southern part of the Far East, and C. coreensis n. sp. from the middle west of South Korea are recorded. Intraspecific variability of some important characters like outer caudal setae and the spinous process of male leg 3 exopod was examined in Korean population of C. semicirculus. Canthocamptus coreensis n. sp. possesses the plesiomorphic characters of the round and narrow hyaline membrane of anal operculum and lacking the sexual reverse transformation in female caudal rami, while it also evolves the apomorphic ones of the modified outer apical setae of male leg 4 exopod and the spinous process of male leg 3 exopod. A key to the five species of the species group known from Korea is prepared.

A Posterior Preference Articulation Method to Dual-Response Surface Optimization: Selection of the Most Preferred Solution Using TOPSIS (쌍대반응표면최적화를 위한 사후선호도반영법: TOPSIS를 활용한 최고선호해 선택)

  • Jeong, In-Jun
    • Knowledge Management Research
    • /
    • v.19 no.2
    • /
    • pp.151-162
    • /
    • 2018
  • Response surface methodology (RSM) is one of popular tools to support a systematic improvement of quality of design in the product and process development stages. It consists of statistical modeling and optimization tools. RSM can be viewed as a knowledge management tool in that it systemizes knowledge about a manufacturing process through a big data analysis on products and processes. The conventional RSM aims to optimize the mean of a response, whereas dual-response surface optimization (DRSO), a special case of RSM, considers not only the mean of a response but also its variability or standard deviation for optimization. Recently, a posterior preference articulation approach receives attention in the DRSO literature. The posterior approach first seeks all (or most) of the nondominated solutions with no articulation of a decision maker (DM)'s preference. The DM then selects the best one from the set of nondominated solutions a posteriori. This method has a strength that the DM can understand the trade-off between the mean and standard deviation well by looking around the nondominated solutions. A posterior method has been proposed for DRSO. It employs an interval selection strategy for the selection step. This strategy has a limitation increasing inefficiency and complexity due to too many iterations when handling a great number (e.g., thousands ~ tens of thousands) of nondominated solutions. In this paper, a TOPSIS-based method is proposed to support a simple and efficient selection of the most preferred solution. The proposed method is illustrated through a typical DRSO problem and compared with the existing posterior method.

Application of Fuzzy Multi-criteria Decision Making Techniques for Robust Prioritization (로버스트 우선순위 결정을 위한 Fuzzy 다기준 의사결정기법의 적용)

  • Han, Bong Gu;Chung, Eun Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.917-926
    • /
    • 2013
  • This study presents the feasibility of fuzzy multi-criteria decision making (MCDM) techniques for the robust prioritization of projects. It is applied to water resources planning problem. Results from weighted sum method (WSM), analytic hierarchy process (AHP), revised analytic hierarchy process (R-AHP), and TOPSIS are compared with those from Fuzzy WSM, Fuzzy, AHP, Fuzzy R-AHP, and Fuzzy TOPSIS. For the calculation, all weights on criteria and the normalized data were obtained from the same investigation. As a result, the rankings from four MCDM techniques are slightly different while those from fuzzy MCDM show the comparatively consistent ranking. Therefore, it is desirable to use fuzzy MCDM technique when MCDM is used for the prioritization problem, since fuzzy MCDM can include the uncertain variability of input data and weighting values on criteria.

A Fundamental Study on the Development of Indicators for the Assessment of Design Quality (건축설계 품질 평가지표 개발을 위한 기초연구)

  • Choi, Yeon-Ju;Yi, June-Seong
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.584-587
    • /
    • 2006
  • Quality assessment of the building is strongly dependent upon satisfying owner's requirements. To develop indicators for the assessment of design quality, survey on current situation of design process and analysis of Design Quality Indicator(DQI) is performed. The survey revealed that the main cause of frequent design changes is variability feature of owner's requirements. DQI, an indicator developed in UK, questionnaire encompasses questions which are relevant throughout the development stages of a building, and can be used at every key stage of the process. Further research will focus on the development of indicators for the assessment of design quality applicable to Korean market. In addition, research on the visualization method to present assessment results and supporting tools to facilitate assessment will be considered.

  • PDF

Methods to Design Provided, Required and Customize Interfaces of Software Components (소프트웨어 컴포넌트의 Provided, Required와 Customize인터페이스 설계 기법)

  • 박지영;김수동
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.10
    • /
    • pp.1286-1303
    • /
    • 2004
  • Component-based Development is gaining a wide acceptance as an economical software development paradigm to develop applications by utilizing reusable software components. Well-defined interface manages coupling and cohesion between components, minimizes the effect on the user in case of component evolvement, and enhances reusability, extendibility and maintainability. Therefore, study on systematic development process and design guidelines for component interface has been required since the component has been introduced. In this paper, we propose three types of interfaces based on software architecture layers and functionality types; Provided Interface which provides functionality of a component, Required Interface which specifies required functionality that is provided by other components, and Customize Interface which tailors the component to customer's requirement. In addition, we suggest design criteria for well-designed interface, and systematic process and instructions for designing interface. We firstly cluster operations extracted from use case model and class model to identify Provided interfaces, and design Customize interfaces based on artifacts for variability. We also specify Required interfaces by identifying dependency among interfaces. Proposed interface design method provides traceability, throughout the component interface design. And furthermore, proposed guidelines support practical design for high quality component based on a case study.

Development of Distributed Rainfall-Runoff Model Using Multi-Directional Flow Allocation and Real-Time Updating Algorithm (I) - Theory - (다방향 흐름 분배와 실시간 보정 알고리듬을 이용한 분포형 강우-유출 모형 개발(I) - 이론 -)

  • Kim, Keuk-Soo;Han, Kun-Yeun;Kim, Gwang-Seob
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.3
    • /
    • pp.247-257
    • /
    • 2009
  • In this study, a distributed rainfall-runoff model is developed using a multi-directional flow allocation algorithm and the real-time runoff updating algorithm. The developed model consists of relatively simple governing equations of hydrologic processes in order to apply developed algorithms and to enhance the efficiency of computational time which is drawback of distributed model application. The variability of topographic characteristics and flow direction according to various spatial resolution were analyzed using DEM(Digital Elevation Model) data. As a preliminary process using fine resolution DEM data, a multi-directional flow allocation algorithm was developed to maintain detail flow information in distributed rainfall-runoff simulation which has strong advantage in computation efficiency and accuracy. Also, a real-time updating algorithm was developed to update current watershed condition. The developed model is able to hold the information of actual behavior of runoff process in low resolution simulation. Therefore it is expected the improvement of forecasting accuracy and computational efficiency.

A New Information Index of Axiomatic Design for Robustness (강건성을 고려한 공리적 설계의 새로운 정보 지수)

  • Hwang, Kwang-Hyeon;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2073-2081
    • /
    • 2002
  • In product design and manufacturing, axiomatic design provides a systematic approach for the decision-making process. Two axioms have been defined such as the Independence Axiom and the Information Axiom. The Information Axiom states that the best design among those that satisfy the independence axiom is the one with the least information content. In other words, the best design is the one that has the highest probability of success. On the other hand, the Taguchi robust design is used in the two-step process; one is "reduce variability," and the other is "adjust the mean on the target." The two-step can be interpreted as a problem that has two FRs (functional requirements). Therefore, the Taguchi method should be used based on the satisfaction of the Independence Axiom. Common aspects exist between the Taguchi method and Axiomatic Design in that a robust design is induced. However, different characteristics are found as well. The Taguchi method does not have the design range, and the probability of success may not be enough to express robustness. Our purpose is to find the one that has the highest probability of success and the smallest variation. A new index is proposed to satisfy these conditions. The index is defined by multiplication of the robustness weight function and the probability density function. The robustness weight function has the maximum at the target value and zero at the boundary of the design range. The validity of the index is proved through various examples.gh various examples.

The process of estimating user response to training stimuli of joint attention using a robot (로봇활용 공동 주의 훈련자극에 대한 사용자 반응상태를 추정하는 프로세스)

  • Kim, Da-Young;Yun, Sang-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1427-1434
    • /
    • 2021
  • In this paper, we propose a psychological state estimation process that computes children's attention and tension in response to training stimuli. Joint attention was adopted as the training stimulus required for behavioral intervention, and the Discrete trial training (DTT) technique was applied as the training protocol. Three types of training stimulation contents are composed to check the user's attention and tension level and provided mounted on a character-shaped tabletop robot. Then, the gaze response to the user's training stimulus is estimated with the vision-based head pose recognition and geometrical calculation model, and the nervous system response is analyzed using the PPG and GSR bio-signals using heart rate variability(HRV) and histogram techniques. Through experiments using robots, it was confirmed that the psychological response of users to training contents on joint attention could be quantified.