• 제목/요약/키워드: process plant

검색결과 3,816건 처리시간 0.031초

석유화학 플랜트용 프로세스 펌프의 국산화율 제고 방안에 관한 연구 (A Study on plans for improving localization of process pumps for petrochemical plants)

  • 조원배;문승재;유호선
    • 플랜트 저널
    • /
    • 제5권3호
    • /
    • pp.50-58
    • /
    • 2009
  • In this paper, the present condition for localization of process pumps and the enhancement method of the localization ratio of process pumps for refinery and chemical plant market were studied. The market of plant industry in the world has grown rapidly since 2000. However, the profit of domestic plant EPC compaies cound not have been increased as much as the market scale because they procured most of equipment from overseas. To make remarkable profit of plant EPC companies in the petrochemical industry, localization of equipments is required. Suitable equipment for localization is process pump applied API 610 standard. An purchased amount of pumps from overseas by domestic plant EPC companies in the last two years were 230 billion won. If process pumps are localized then an profit of plant EPC project will increase.

  • PDF

해상에서의 LNG 생산을 위한 공정 고찰 (Study of Process for Offshore LNG Production)

  • 김승혁;하문근;김병우;;구근회
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.119-123
    • /
    • 2002
  • Liquefied Natural Gas(LNG) continues to attract modern gas industries as well as domestic markets as their main energy source in the recent years. This is mainly because LNG is inherently cleaner and more energy efficiency than other fuels. Offshore LNG production plant is of interest to many oil producing companies all over the world. This article discuss about the production process encountered while developing such a production facility. Typical offshore oil and gas processing required for oil stabilization and other optional units that can be added to the facilities. The production process can broadly be divided into five major units namely, (i) Oil Stabilization unit, (ii) Gas Treatment unit, (iii) Methane Recovery unit, (iv) Distillation unit and (v) LNG Liquefaction unit. The process simulation was carried out for each unit with a given wellhead composition. The topside facilities of offshore LNG production plant will be very similar to the process adopted in offshore processing platform along with the typical onshore LNG production plant. However, the process design problems associated with FPSO motion to be taken care of while developing floating LNG production plant.

  • PDF

시스템 엔지니어링 방식에 의한 철강 연속 주조 시스템 설계 (A Systems Engineering Approach to Designing Continuous Casting System in Iron and Steel Making Plant)

  • 신기영;홍대근;윤수철;서석환
    • 시스템엔지니어링학술지
    • /
    • 제10권2호
    • /
    • pp.21-31
    • /
    • 2014
  • Recently, global market competition of iron and steel products is ever increasing due to over-supply from increased number of industries in rapidly growing countries, such as China, Brazil, and Indonesia. To occupy the big market, major industries are trying to develop high quality, high performance steel products via developing a new iron and steel making process. In other words, development of a new and innovative steel plant is a key to cope with the tough situation. Design and development for the life cycle of iron and steel making plant is very much complex and multi-disciplinary. In this paper, Plant Systems Engineering (PSE), a tailored SE process for industrial plant based on ISO/IEC 15288 is used for the design of Continuous Casting Process (CCP) Plant system. The CCP is a crucial process in steel making plant, whose design technology is occupied by the advanced foreign companies. For the sake of increasing engineering capability for the design of CCP, we applied PSE Process for the renovation of the existing CCP Process. Through the study, we were convinced that the applied method can be used for other plant systems, and SE is really the way of thinking, design, and development of modern complex and multi-disciplinary systems where high risk factors are present throughout the whole life cycle.

인산제조공정의 모사연구 (An Intelligent Simulation of a Phosphoric Acid Plant)

  • 여영구
    • 한국시뮬레이션학회논문지
    • /
    • 제3권1호
    • /
    • pp.167-178
    • /
    • 1994
  • For the identification of the optimal operating conditions of phosphoric acid plant, an intelligent simulation was performed based on the dissolution reaction of phosphate rock. A phosphoric acid plant consists of three main processes : ball-mill grinding process, rock reaction process and slurry filteration process. The grinding and filteration processes are relatively simple processes and most of the simulation works are on the reaction process. The practical operation data of phosphoric acid plant at Namhae Chemical Corp. were utilized in the simulation. The operation of the phosphoric acid plant is highly dependent on the heuristics of operators and so the expert system technology was employed. The operation of phosphoric acid plant varies with the origin of phosphate rock. Results of the simulation showed the optimal values of major process variables and optimal operating conditions. The knowledgebase for the expert system was constructed based on the interview with the experienced plant operators.

  • PDF

FASTMET$\circledR$ Process for Steel Mill Waste Recycling

  • Tanaka, Hidetoshi;Harada, Takao;Sugitatsu, Hiroshi
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.387-392
    • /
    • 2001
  • Kobe Steel, LTD. and Midrex Technologies Inc. jointly developed the FASTMET$\circledR$ process as a steel mill waste recycle technology in which the DRI product meets BF feed material or BOF/EAF feed material requirements. FASTMET(R) process turns value-less wastes into valuable DRI and sellable zinc oxide, and gives the solution for the steel mill wastes recycling from both economical and environmental viewpoints. During the development of the process, Laboratory, Pilot Plant and Demonstration Plant tests were carried out from 1990 to 1998. The first FASTMET(R) commercial plant began operation in April, 2000 and the second commercial plant started in April, 2001 Both commercial plants have proceeded successfully preying that FASTMET$\circledR$ is a suitable process for recycling steel mill waste and for producing DRI as an iron source.

  • PDF

A Study on CNN based Production Yield Prediction Algorithm for Increasing Process Efficiency of Biogas Plant

  • Shin, Jaekwon;Kim, Jintae;Lee, Beomhee;Lee, Junghoon;Lee, Jisung;Jeong, Seongyeob;Chang, Soonwoong
    • International journal of advanced smart convergence
    • /
    • 제7권1호
    • /
    • pp.42-47
    • /
    • 2018
  • Recently, as the demand for limited resources continues to rise and problems of resource depletion rise worldwide, the importance of renewable energy is gradually increasing. In order to solve these problems, various methods such as energy conservation and alternative energy development have been suggested, and biogas, which can utilize the gas produced from biomass as fuel, is also receiving attention as the next generation of innovative renewable energy. New and renewable energy using biogas is an energy production method that is expected to be possible in large scale because it can supply energy with high efficiency in compliance with energy supply method of recycling conventional resources. In order to more efficiently produce and manage these biogas, a biogas plant has emerged. In recent years, a large number of biogas plants have been installed and operated in various locations. Organic wastes corresponding to biogas production resources in a biogas plant exist in a wide variety of types, and each of the incoming raw materials is processed in different processes. Because such a process is required, the case where the biogas plant process is inefficiently operated is continuously occurring, and the economic cost consumed for the operation of the biogas production relative to the generated biogas production is further increased. In order to solve such problems, various attempts such as process analysis and feedback based on the feedstock have been continued but it is a passive method and very limited to operate a medium/large scale biogas plant. In this paper, we propose "CNN-based production yield prediction algorithm for increasing process efficiency of biogas plant" for efficient operation of biogas plant process. Based on CNN-based production yield forecasting, which is one of the deep-leaning technologies, it enables mechanical analysis of the process operation process and provides a solution for optimal process operation due to process-related accumulated data analyzed by the automated process.

Analyses of Organic Acids and Phenolic Compounds in Columbia Coffee Bean in Roasting Process

  • Park, Jongsun;Kim, Yongsung;Yeon, Jihun;Woo, Jongwook;Seo, Youmi;Mun, Jeong-Yun;Choi, Ji-Soo;Park, Min-Jeong;Im, Jong-Yun;Jang, Tae-Won;Park, Jae-Ho
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 춘계학술발표회
    • /
    • pp.88-88
    • /
    • 2018
  • Coffee is one of the most popular drinks in the world. Roasting process of coffee bean is one of major steps to make coffee, however, there are few studies which analyzed chemical compounds in intermediate state of roasting coffee beans due to technical limitations to get coffee beans with the same roasting condition. We utilized Stronghold S7 pro roasting machine which guarantees the saming roasting conditions repletively with the aid of precise computer to control heat sources to get 20 steps (every 30 seconds) of roasted coffee beans during roasting process (10 min in total). Along with roasting process, phenolic compounds were decreased, which can be explained that roasting process cause phenolic compounds degradation. Caffeine is almost constant during roasting, reflecting that caffeine is not affected in roasting process. These samples presents that organic acids significantly increase along with the roasting process by HPLC analysis. With additional analysis of coffee beans, such as moisture contents, pH, as well as coffee tastes, our analysis will show detailed process of chemical compounds of coffee beans during roasting process.

  • PDF

온톨로지와 ISO 15926을 이용한 공정 플랜트 기자재의 표현 (Representation of Process Plant Equipment Using Ontology and ISO 15926)

  • 문두환;김병철;한순흥
    • 한국CDE학회논문집
    • /
    • 제14권1호
    • /
    • pp.1-9
    • /
    • 2009
  • ISO 15926 is an international standard for the representation of process plant lifecycle data. However, it is not easy to implement the part 2-data model and the part 4-initial reference data because of their complexity in terms of data structure and shortages of related development toolkits. To overcome this problem, ISO 15926-7(part 7) is under development. ISO 15926-7 specifies implementation methods for sharing and exchange of process plant lifecycle data, which is based on semantic web technologies such as OWL, Web Services, and SPARQL. For the application of ISO 15926-7, this paper discusses how to represent technical specifications of process plant equipment by defining user-defined reference data and object information model with an example of reactor coolant pumps located in the reactor coolant system of an APR 1400 nuclear power plant.

활성슬러지 폐수처리장 진단 소프트웨어 (Diagnostic Software for Wastewater Treatment Plant using Activated-Sludge Process)

  • 손건태;이재은
    • 한국환경과학회지
    • /
    • 제8권5호
    • /
    • pp.611-616
    • /
    • 1999
  • The diagnostic software for the wastewater treatment plant using activated-sluge process is developed in order to increase the efficiency of management of the wastewater treatment plant. This software is based on the expert system and the visualized user interface, including the diagnosis of quantitative and qualitative data. For the generalization of this software, the initialization of each unit process and updating the files can be possible.

  • PDF

소용량 수소액화 파일럿 플랜트 구축을 위한 공정의 열역학 해석 (Thermodynamic Analysis of a Hydrogen Liquefaction Process for a Hydrogen Liquefaction Pilot Plant with a Small Capacity)

  • 김태훈;최병일;한용식;도규형
    • 한국수소및신에너지학회논문집
    • /
    • 제31권1호
    • /
    • pp.41-48
    • /
    • 2020
  • The present study discussed the thermodynamic analysis of the hydrogen liquefaction process to build a hydrogen liquefaction pilot plant with a small capacity (0.5 ton/day). A 2-stage Brayton cycle utilizing LNG/LN2 cold energy was suggested to be built in Korea for the hydrogen liquefaction pilot plant with a small capacity. Thermodynamic analysis on the effect of various variables on the efficiency of hydrogen liquefaction process was performed. As a result, the CASE in which the ortho-para conversion catalyst was infiltrated inside the heat exchanger showed the best process efficiency. Finally, thermodynamic analysis was performed on the effect of turbo expander compression ratio on the hydrogen liquefaction process and it was confirmed that an optimal turbo expander compression ratio exists.