• Title/Summary/Keyword: process analytics

Search Result 120, Processing Time 0.03 seconds

GNI Corpus Version 1.0: Annotated Full-Text Corpus of Genomics & Informatics to Support Biomedical Information Extraction

  • Oh, So-Yeon;Kim, Ji-Hyeon;Kim, Seo-Jin;Nam, Hee-Jo;Park, Hyun-Seok
    • Genomics & Informatics
    • /
    • v.16 no.3
    • /
    • pp.75-77
    • /
    • 2018
  • Genomics & Informatics (NLM title abbreviation: Genomics Inform) is the official journal of the Korea Genome Organization. Text corpus for this journal annotated with various levels of linguistic information would be a valuable resource as the process of information extraction requires syntactic, semantic, and higher levels of natural language processing. In this study, we publish our new corpus called GNI Corpus version 1.0, extracted and annotated from full texts of Genomics & Informatics, with NLTK (Natural Language ToolKit)-based text mining script. The preliminary version of the corpus could be used as a training and testing set of a system that serves a variety of functions for future biomedical text mining.

Reference Model and Architecture of Interactive Cognitive Health Advisor based on Evolutional Cyber-physical Systems

  • Lee, KangYoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4270-4284
    • /
    • 2019
  • This study presents a reference model (RM) and the architecture of a cognitive health advisor (CHA) that integrates information with ambient intelligence. By controlling the information using the CHA platform, the reference model can provide various ambient intelligent solutions to a user. Herein, a novel approach to a CHA RM based on evolutional cyber-physical systems is proposed. The objective of the CHA RM is to improve personal health by managing data integration from many devices as well as conduct a new feedback cycle, which includes training and consulting to improve quality of life. The RM can provide an overview of the basis for implementing concrete software architectures. The proposed RM provides a standardized clarification for developers and service designers in the design and implementation process. The CHA RM provides a new approach to developing a digital healthcare model that includes integrated systems, subsystems, and components. New features for chatbots and feedback functions set the position of the conversational interface system to improve human health by integrating information, analytics, and decisions and feedback as an advisor on the CHA platform.

Keyword Data Analysis Using Bayesian Conjugate Prior Distribution (베이지안 공액 사전분포를 이용한 키워드 데이터 분석)

  • Jun, Sunghae
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.6
    • /
    • pp.1-8
    • /
    • 2020
  • The use of text data in big data analytics has been increased. So, much research on methods for text data analysis has been performed. In this paper, we study Bayesian learning based on conjugate prior for analyzing keyword data extracted from text big data. Bayesian statistics provides learning process for updating parameters when new data is added to existing data. This is an efficient process in big data environment, because a large amount of data is created and added over time in big data platform. In order to show the performance and applicability of proposed method, we carry out a case study by analyzing the keyword data from real patent document data.

Automation Monitoring With Sensors For Detecting Covid Using Backpropagation Algorithm

  • Kshirsagar, Pravin R.;Manoharan, Hariprasath;Tirth, Vineet;Naved, Mohd;Siddiqui, Ahmad Tasnim;Sharma, Arvind K.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2414-2433
    • /
    • 2021
  • This article focuses on providing remedial solutions for COVID disease through the data collection process. Recently, In India, sudden human losses are happening due to the spread of infectious viruses. All people are not able to differentiate the number of affected people and their locations. Therefore, the proposed method integrates robotic technology for monitoring the health condition of different people. If any individual is affected by infectious disease, then data will be collected and within a short span of time, it will be reported to the control center. Once, the information is collected, then all individuals can access the same using an application platform. The application platform will be developed based on certain parametric values, where the location of each individual will be retained. For precise application development, the parametric values related to the identification process such as sub-interval points and intensity of detection should be established. Therefore, to check the effectiveness of the proposed robotic technology, an online monitoring system is employed where the output is realized using MATLAB. From simulated values, it is observed that the proposed method outperforms the existing method in terms of data quality with an observed percentage of 82.

A Study on Big Data Analytics Services and Standardization for Smart Manufacturing Innovation

  • Kim, Cheolrim;Kim, Seungcheon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.91-100
    • /
    • 2022
  • Major developed countries are seriously considering smart factories to increase their manufacturing competitiveness. Smart factory is a customized factory that incorporates ICT in the entire process from product planning to design, distribution and sales. This can reduce production costs and respond flexibly to the consumer market. The smart factory converts physical signals into digital signals, connects machines, parts, factories, manufacturing processes, people, and supply chain partners in the factory to each other, and uses the collected data to enable the smart factory platform to operate intelligently. Enhancing personalized value is the key. Therefore, it can be said that the success or failure of a smart factory depends on whether big data is secured and utilized. Standardized communication and collaboration are required to smoothly acquire big data inside and outside the factory in the smart factory, and the use of big data can be maximized through big data analysis. This study examines big data analysis and standardization in smart factory. Manufacturing innovation by country, smart factory construction framework, smart factory implementation key elements, big data analysis and visualization, etc. will be reviewed first. Through this, we propose services such as big data infrastructure construction process, big data platform components, big data modeling, big data quality management components, big data standardization, and big data implementation consulting that can be suggested when building big data infrastructure in smart factories. It is expected that this proposal can be a guide for building big data infrastructure for companies that want to introduce a smart factory.

Exploring Edutech-based Vocational Education and Training Model for Worker Training Programs

  • Kyung-Hwa Rim;Jungmin Shin;Ju-ri Kim
    • Journal of Practical Engineering Education
    • /
    • v.15 no.2
    • /
    • pp.273-283
    • /
    • 2023
  • Education has recently witnessed a rapid increase in the use of edutech worldwide. This study focuses on Korean workers and explores an edutech-based learning model for vocational education and training. Based on analyses of edutech cases and interviews with edutech experts, a draft edutech model was designed and the validity was evaluated based on two Delphi surveys with a panel of experts in the field. The study's findings suggest that edutech-based employee education and training should prioritize LXP orientation (last CVR=1, last Mean=4.70) , implement adaptive learning through learning analytics (last CVR=1, last Mean=4.90), enhance the human touch effect using edutech (last CVR=1, last Mean=4.90), and emphasize the importance of designing curricula that apply edutech in a step-by-step learning process while incorporating suitable instructional design for the key technologies involved in vocational training programs. In addition, it was revealed that there is a strong need to implement a method that makes each stage of the learning process more effective (before, during, and after). Edutech-based vocational training program should consider the interests of all stakeholders, including learners, instructors, vocational training institutions, and government agencies. Given the promotion of government-sponsored vocational training projects in Korea, the findings of this research are likely to have significant implications for the future of Korea's education and training policies.

Predicting Learning Achievements with Indicators of Perceived Affordances Based on Different Levels of Content Complexity in Video-based Learning

  • Dasom KIM;Gyeoun JEONG
    • Educational Technology International
    • /
    • v.25 no.1
    • /
    • pp.27-65
    • /
    • 2024
  • The purpose of this study was to identify differences in learning patterns according to content complexity in video-based learning environments and to derive variables that have an important effect on learning achievement within particular learning contexts. To achieve our aims, we observed and collected data on learners' cognitive processes through perceived affordances, using behavioral logs and eye movements as specific indicators. These two types of reaction data were collected from 67 male and female university students who watched two learning videos classified according to their task complexity through the video learning player. The results showed that when the content complexity level was low, learners tended to navigate using other learners' digital logs, but when it was high, students tended to control the learning process and directly generate their own logs. In addition, using derived prediction models according to the degree of content complexity level, we identified the important variables influencing learning achievement in the low content complexity group as those related to video playback and annotation. In comparison, in the high content complexity group, the important variables were related to active navigation of the learning video. This study tried not only to apply the novel variables in the field of educational technology, but also attempt to provide qualitative observations on the learning process based on a quantitative approach.

Collaborative Filtering for Credit Card Recommendation based on Multiple User Profiles (신용카드 추천을 위한 다중 프로파일 기반 협업필터링)

  • Lee, Won Cheol;Yoon, Hyoup Sang;Jeong, Seok Bong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.154-163
    • /
    • 2017
  • Collaborative filtering, one of the most widely used techniques to build recommender systems, is based on the idea that users with similar preferences can help one another find useful items. Credit card user behavior analytics show that most customers hold three or less credit cards without duplicates. This behavior is one of the most influential factors to data sparsity. The 'cold-start' problem caused by data sparsity prevents recommender system from providing recommendation properly in the personalized credit card recommendation scenario. We propose a personalized credit card recommender system to address the cold-start problem, using multiple user profiles. The proposed system consists of a training process and an application process using five user profiles. In the training process, the five user profiles are transformed to five user networks based on the cosine similarity, and an integrated user network is derived by weighted sum of each user network. The application process selects k-nearest neighbors (users) from the integrated user network derived in the training process, and recommends three of the most frequently used credit card by the k-nearest neighbors. In order to demonstrate the performance of the proposed system, we conducted experiments with real credit card user data and calculated the F1 Values. The F1 value of the proposed system was compared with that of the existing recommendation techniques. The results show that the proposed system provides better recommendation than the existing techniques. This paper not only contributes to solving the cold start problem that may occur in the personalized credit card recommendation scenario, but also is expected for financial companies to improve customer satisfactions and increase corporate profits by providing recommendation properly.

A Study on Establishing a Market Entry Strategy for the Satellite Industry Using Future Signal Detection Techniques (미래신호 탐지 기법을 활용한 위성산업 시장의 진입 전략 수립 연구)

  • Sehyoung Kim;Jaehyeong Park;Hansol Lee;Juyoung Kang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.249-265
    • /
    • 2023
  • Recently, the satellite industry has been paying attention to the private-led 'New Space' paradigm, which is a departure from the traditional government-led industry. The space industry, which is considered to be the next food industry, is still receiving relatively little attention in Korea compared to the global market. Therefore, the purpose of this study is to explore future signals that can help determine the market entry strategies of private companies in the domestic satellite industry. To this end, this study utilizes the theoretical background of future signal theory and the Keyword Portfolio Map method to analyze keyword potential in patent document data based on keyword growth rate and keyword occurrence frequency. In addition, news data was collected to categorize future signals into first symptom and early information, respectively. This is utilized as an interpretive indicator of how the keywords reveal their actual potential outside of patent documents. This study describes the process of data collection and analysis to explore future signals and traces the evolution of each keyword in the collected documents from a weak signal to a strong signal by specifically visualizing how it can be used through the visualization of keyword maps. The process of this research can contribute to the methodological contribution and expansion of the scope of existing research on future signals, and the results can contribute to the establishment of new industry planning and research directions in the satellite industry.

A Study on Enhancing Personalization Recommendation Service Performance with CNN-based Review Helpfulness Score Prediction (CNN 기반 리뷰 유용성 점수 예측을 통한 개인화 추천 서비스 성능 향상에 관한 연구)

  • Li, Qinglong;Lee, Byunghyun;Li, Xinzhe;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.29-56
    • /
    • 2021
  • Recently, various types of products have been launched with the rapid growth of the e-commerce market. As a result, many users face information overload problems, which is time-consuming in the purchasing decision-making process. Therefore, the importance of a personalized recommendation service that can provide customized products and services to users is emerging. For example, global companies such as Netflix, Amazon, and Google have introduced personalized recommendation services to support users' purchasing decisions. Accordingly, the user's information search cost can reduce which can positively affect the company's sales increase. The existing personalized recommendation service research applied Collaborative Filtering (CF) technique predicts user preference mainly use quantified information. However, the recommendation performance may have decreased if only use quantitative information. To improve the problems of such existing studies, many studies using reviews to enhance recommendation performance. However, reviews contain factors that hinder purchasing decisions, such as advertising content, false comments, meaningless or irrelevant content. When providing recommendation service uses a review that includes these factors can lead to decrease recommendation performance. Therefore, we proposed a novel recommendation methodology through CNN-based review usefulness score prediction to improve these problems. The results show that the proposed methodology has better prediction performance than the recommendation method considering all existing preference ratings. In addition, the results suggest that can enhance the performance of traditional CF when the information on review usefulness reflects in the personalized recommendation service.