• 제목/요약/키워드: procaspase-8

검색결과 31건 처리시간 0.023초

Full-length Fas-associated Death Domain Protein Interacts with Short Form of Cellular FLICE Inhibitory Protein

  • Jeong, Mi-Suk;Jang, Se-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권1호
    • /
    • pp.87-92
    • /
    • 2006
  • Fas-associated death domain protein (FADD) recruits and activates procaspase-8 through interactions between the death effector domains of these two proteins. Cellular FLICE-inhibitory protein (c-FLIP) was identified as a molecule with sequence homology to caspase-8. It has been postulated that c-FLIP prevents formation of the competent death-inducing signaling complex in a ligand-dependent manner, through its interaction with FADD and/or caspase-8. However, the interaction of FADD and $c-FLIP_s$ (short form) in apoptosis signaling has been controversially discussed. We show the purification and the characterization of human full-length FADD and $c-FLIP_s$ expressed in Escherichia coli. The purified FADD and $c-FLIP_s$ are shown as homogeneity, respectively, in SDS-PAGE analysis and light-scattering measurements. The folding properties of the $\alpha$-helical structure of FADD and the super-secondary structure of $c-FLIP_s$ proteins were characterized by circular dichroism spectroscopy. Furthermore, we report here a series of biochemical and biophysical data for FADD-$c-FLIP_s$ binding in vitro. The binding of both FADD and $c-FLIP_s$ proteins was detected by BIAcore biosensor, fluorescence measurement, and size-exclusion column (SEC).

당귀보혈탕(當歸補血湯)의 배합비율에 따른 대장암 세포주 HCT116의 세포사멸 효과 (Effect of Dangguibohyultang and its combinations on apoptosis in human colorectal adenocarcinoma HCT116 cells)

  • 김병완;윤현정;전현숙;윤형중;김창현;박선동
    • 대한본초학회지
    • /
    • 제21권2호
    • /
    • pp.37-46
    • /
    • 2006
  • Objectives : The purpose of this study was to investigate the effect of Dangguibohyultang (DB) and its combination (DB-I; Astragali membraneus BUNGE : Angelica gigas NAKAI=5:1, DB-II; Astragali membraneus BUNGE:Angelica gigas NAKAI=1:1, DB-III; Astragali membraneus BUNGE:Angelica gigas NAKAI=1:5,) on apoptosis in human colorectal adenocarcinoma HCT116 cells. Methods : To study the cytotoxic effect of methanol extract of DB-I, DB-II and DB-III on HCT116 cells, the cell viability was determined by XTT reduction method and ttypan blue exclusion assay. To confirm the induction of apoptosis, the cleavage of poly ADP-ribose polymerase (PARP), a substrate for caspase-3 and a typical sign of apoptosis, and the activation of procaspase-3, -8 and -9 were examined by western blot analysis. Furthermore, DB-induced apoptosis was confirmed by DNA fragmentation. The release of cytochrome C from mitochondria to cytosol, the level of Bcl-2 and Bax, and the expressions of Raf/MEK/ERK were examined by western blot analysis. Results : DB-I and DB-II reduced proliferation of HCT116 cells in a dose-dependent manner. DB-I and DB-II decreased procaspase-3, -8, -9 levels in a dose-dependent manner and induced the clevage of PARP. DB-I and DB-II also triggered the mitochondrial apoptotic signaling by increasing the release of cytochrome C from mitochondria to cytosol, decreasing of anti-apoptotic Bcl-2, and increasing of pro-apoptotic Bax. DB-I and DB-II decreased the activation of Ras/Raf/MEK/ERK cascade in a dose-dependent manner. Conclusion : These results suggest that DB-I and DB-II induce apoptosis via mitochondrial pathway in HCT116 cells. Furthermore, Raf/MEK/ERK cascade is involved in DB-induced apoptosis. These results suggest that DB is potentially useful as a chemotherapeutic agent in human liver cancer.

  • PDF

사람 두경부 편평세포암종 HEp2 세포에서 BCH에 의한 세포성장 억제기전 (Mechanism of Growth Inhibition by BCH in HEp2 Human Head and Neck Squamous Cell Carcinoma)

  • 최봉규;정규용;조선호;김춘성;김도경
    • 한국식품영양과학회지
    • /
    • 제37권5호
    • /
    • pp.555-560
    • /
    • 2008
  • 사람 두경부 편평세포암종 HEp2 세포를 이용하여 아미노산 수송계 L 억제제인 BCH의 암세포 성장억제에 미치는 효과와 세포성장 억제기전을 밝히기 위해 HEp2 세포에서 uptake 실험, MTT 분석, DNA fragmentation 분석 및 immunoblotting 등을 시행하여 다음과 같은 결과를 얻었다. 아미노산 수송계 L 억제제인 BCH는 L-leucine uptake를 농도 의존적으로 억제하였으며, 그 $IC_{50}$$ 51.2{\pm}3.8{\mu}M$로 산출되었다. BCH는 HEp2 세포의 성장을 시간과 농도에 의존적으로 억제하였다. BCH를 처리한 실험군에서 DNA fragmentation 현상은 볼 수 없었다. BCH를 처리한 실험군에서 procaspase-3과 procaspase-7의 proteolytic cleavage 현상은 볼 수 없었다. 본 연구의 결과로서 사람 두경부 편평세포 암종 HEp2 세포에서 아미노산 수송계 L 억제제 BCH는 LAT1 활성을 억제하여 세포성장에 필수적인 L-leucine 등 중성아미노산의 세포 내 고갈을 유도함으로써 HEp2 세포의 성장억제를 유도할 가능성이 있는 것으로 사료된다.

Evidence of complex formation between FADD and c-FLIP death effector domains for the death inducing signaling complex

  • Hwang, Eun Young;Jeong, Mi Suk;Park, So Young;Jang, Se Bok
    • BMB Reports
    • /
    • 제47권9호
    • /
    • pp.488-493
    • /
    • 2014
  • Adaptor protein FADD forms the death inducing signaling complex (DISC) by recruiting the initiating caspases-8 and -10 through homotypic death effector domain (DED) interactions. Cellular FLICE-inhibitory protein (c-FLIP) is an inhibitor of death ligand-induced apoptosis downstream of death receptors, and FADD competes with procaspase-8/10 for recruitment for DISC. However, the mechanism of action of FADD and c-FLIP proteins remain poorly understood at the molecular level. In this study, we provide evidence indicating that the death effector domain (DED) of FADD interacts directly with the death effector domain of human c-FLIP. In addition, we use homology modeling to develop a molecular docking model of FADD and c-FLIP proteins. We also find that four structure-based mutants (E80A, L84A, K169A and Y171A) of c-FLIP DEDs disturb the interaction with FADD DED, and that these mutations lower the stability of the c-FLIP DED.

Influence of Tyrosol on Cell Growth Inhibition of KB Human Oral Cancer Cells

  • Lee, Ue-Kyung;Kim, Su-Gwan;Go, Dae-San;Yu, Sun-Kyoung;Kim, Chun Sung;Kim, Jeongsun;Kim, Do Kyung
    • International Journal of Oral Biology
    • /
    • 제41권4호
    • /
    • pp.175-181
    • /
    • 2016
  • Tyrosol, a phenylethanoid and a derivative of phenethyl alcohol, possesses various biological properties, such as anti-oxidative and cardioprotective activity. Olive oil is the principal source of tyrosol in the human diet. However, so far the anti-cancer activity of tyrosol has not yet been well defined. This study therefore undertakes to examine the cytotoxic activity and the mechanism of cell death exhibited by tyrosol in KB human oral cancer cells. Treatment of KB cells with tyrosol induced the cell growth inhibition in a concentration- and a time-dependent manner. Furthermore, the treatment of tyrosol induced nuclear condensation and fragmentation of KB cells. Tyrosol also promoted proteolytic cleavage of procaspase-3, -7, -8 and -9, increasing the amounts of cleaved caspase-3, -7, -8 and -9. In addition, tyrosol increased the levels of cleaved PARP in KB cells. These results suggest that tyrosol induces the suppression of cell growth and cell apoptosis in KB human oral cancer cells, and is therefore a potential candidate for anti-cancer drug discovery.

In vitro Growth Inhibition and Apoptotic Effects of Hang-baek-Tang on HL-60 Cells

  • Park Jun-Ho;Ju Sung-Min;Kim Kun-Jung;Jeon Byung-Hoon;Oh Jung-Mi;Lee Chae-Ho;Han Dong-Min;Kim Won-Sin
    • 동의생리병리학회지
    • /
    • 제19권6호
    • /
    • pp.1636-1639
    • /
    • 2005
  • To develop novel anti-leukemic medicine, we have prepared a Korean traditional medicine, named Hang-baek-Tang, which is composed of 8 kinds of anti-leukemic medicinal plants. The water extracts was examined anti-leukemic activity using the human leukemia cell line, HL-60 cells. HL-60 cells showed the growth inhibition and several apoptotic features, including DNA ladders, morphological changes, by treatment of the cells with Hang-Daek-Tang. We have observed that Hang-baek-Tang induced the activation of caspase-3, caspase-8 and caspase-9. Further molecular analysis demonstrated that Hang-baek-Tang induced cleavage of PARP and increase of hypodiploid (Sub-G1) population in flow cytometric analysis. These results indicate that Hang-baek-Tang has been considered to exert anti-leukemic activity through the procaspase-3 activation pathway.

Styrene Cytotoxicity in Testicular Leydig Cells In Vitro

  • Chung, Jin-Yong;Park, Ji-Eun;Kim, Yoon-Jae;Lee, Seung-Jin;Yu, Wook-Joon;Kim, Jong-Min
    • 한국발생생물학회지:발생과생식
    • /
    • 제26권3호
    • /
    • pp.99-105
    • /
    • 2022
  • Styrene is the precursor of polystyrene. Human exposure to styrene could occur in occupational and residential settings and via food intake. Styrene is metabolized to styrene-7,8-oxide by cytochrome P450 enzyme. In the present study, we investigated the cytotoxicity mediated by styrene and styrene-7,8-oxide in TM3 testicular Leydig cells in vitro. We first monitored the nuclear fragmentation in Leydig cells after exposure to styrene or styrene-7,8-oxide. Hoechst 33258 cell staining showed that styrene exposure in TM3 Leydig cells did not exhibit nuclear fragmentation at any concentration. In contrast, nuclear fragmentation was seen in styrene-7,8-oxide-exposed cells. These results indicate that cytotoxicity-mediated cell death in Leydig cells is more susceptible to styrene-7,8-oxide than to styrene. Following styrene treatment, procaspase-3 and XIAP protein levels did not show significant changes, and cleaved (active) forms of caspase-3 were not detected. Consistent with the western blot results, the active forms of caspase-3 and XIAP proteins were not prominently altered in the cytoplasm of cells treated with styrene. In contrast to styrene, styrene-7,8-oxide induced cell death in an apoptotic fashion, as seen in caspase-3 activation and increased the expression of XIAP proteins. Taken together, the results obtained in this study demonstrate a fundamental idea that Leydig cells are capable of protecting themselves from cytotoxicity-mediated apoptosis as a result of styrene exposure in vitro. It remains unclear whether the steroid-producing function, i.e., steroidogenesis, of Leydig cells is also unaffected by exposure to styrene. Therefore, further studies are needed to elucidate the endocrine disrupting potential of styrene in Leydig cells.

Inhibition of cell growth and induction of apoptosis by bilobalide in FaDu human pharyngeal squamous cell carcinoma

  • Jeong, Kyung In;Kim, Su-Gwan;Go, Dae-San;Kim, Do Kyungm
    • International Journal of Oral Biology
    • /
    • 제45권1호
    • /
    • pp.8-14
    • /
    • 2020
  • Bilobalide isolated from the leaves of Ginkgo biloba has several pharmacological activities such as neuroprotective, anti-inflammatory, and anticonvulsant. However, the effect of bilobalide on cancer has not been clearly established. The main purpose of this study was to investigate the effect of bilobalide on cell growth and apoptosis induction in FaDu human pharyngeal squamous cell carcinoma. This was examined by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay, nuclear 4′,6-diamidino-2-phenylindole dihydrochloride staining, DNA fragmentation analysis, and immunoblotting. Bilobalide inhibited the growth of FaDu cells in dose- and time-dependent manners. Treatment with bilobalide resulted in nuclear condensation and DNA fragmentation in FaDu cells. Furthermore, it promoted the proteolytic cleavage of procaspase-3/-7/-8/-9 with increase in the amount of cleaved caspase-3/-7/-8/-9. Bilobalide-induced apoptosis in FaDu cells was mediated by the expression of Fas and the activation of caspase-8, caspase-3, and poly (ADP-ribose) polymerase. Immunoblotting revealed that the antiapoptotic mitochondrial protein Bcl-2 was downregulated, but the proapoptotic protein Bax was upregulated by bilobalide in FaDu cells. Bilobalide significantly increased Bax/Bcl-2 ratio. These results suggest that bilobalide inhibits cell proliferation and induces apoptosis in FaDu human pharyngeal squamous cell carcinoma via both the death receptor-mediated extrinsic apoptotic pathway and the mitochondrial-mediated intrinsic apoptotic pathway.

진균독소 Gliotoxin에 의한 세포고사에서 Zinc의 예방적 역할 (The Protective Mechanism of Zinc in Fungal Metabolite Gliotoxin-induced Apoptosis)

  • 박지선;소홍섭;김명선;정병학;최익준;진경호;진성호;김남송;조광호;박래길
    • 대한미생물학회지
    • /
    • 제34권6호
    • /
    • pp.501-512
    • /
    • 1999
  • Gliotoxin, a fungal metabolite, is one of the epipolythiodioxopiperazine classes and has a variety of effects including immunomodulatory and apoptotic agents. This study is designed to evaluate the effect of zinc on gliotoxin-induced death of HL-60 cells. Here, we demonstrated that treatment of gliotoxin decreased cell viability in a dose and time-dependent manner. Gliotoxin-induced cell death was confirmed as apoptosis characterized by chromatin margination, fragmentation and ladder-pattern digestion of genomic DNA. Gliotoxin increased the proteolytic activities of caspase 3, 6, 8, and 9. Caspase-3 activation was further confirmed by the degradation of procaspase-3 and PARP in gliotoxin-treated HL-60 cells. Zinc compounds including $ZnCl_2$ and $ZnSO_4$ markedly inhibited gliotoxin-induced apoptosis in HL-60 cells (from 30% to 90%). Consistent with anti-apoptotic effects, zinc also suppressed the enzymatic activities of caspase-3 and -9 proteases. In addition, cleavage of both PARP and procaspase 3 in gliotoxin-treated HL-60 cells was inhibited by the addition of zinc compounds. We further demonstrated that expression of Fas ligand by gliotoxin was suppressed by zinc compounds. These data suggest that zinc may prevent gliotoxin-induced apoptosis via inhibition of Fas ligand expression as well as suppression of caspase family cysteine proteases-3 and -9 in HL-60 cells.

  • PDF

Apple pectin, a dietary fiber, ameliorates myocardial injury by inhibiting apoptosis in a rat model of ischemia/reperfusion

  • Lim, Sun Ha;Kim, Mi Young;Lee, Jongwon
    • Nutrition Research and Practice
    • /
    • 제8권4호
    • /
    • pp.391-397
    • /
    • 2014
  • BACKGROUND/OBJECTIVE: Myocardial cell death due to occlusion of the coronary arteries leads to myocardial infarction, a subset of coronary heart disease (CHD). Dietary fiber is known to be associated with a reduced risk of CHD, the underlying mechanisms of which were suggested to delay the onset of occlusion by ameliorating risk factors. In this study, we tested a hypothesis that a beneficial role of dietary fiber could arise from protection of myocardial cells against ischemic injury, manifested after occlusion of the arteries. MATERIALS/METHODS: Three days after rats were fed apple pectin (AP) (with 10, 40, 100, and 400 mg/kg/day), myocardial ischemic injury was induced by 30 min-ligation of the left anterior descending coronary artery, followed by 3 hr-reperfusion. The area at risk and infarct area were evaluated using Evans blue dye and 2,3,5-triphenyltetrazolium chloride (TTC) staining, respectively. DNA nicks reflecting the extent of myocardial apoptosis were assessed by TUNEL assay. Levels of cleaved caspase-3, Bcl-2, and Bax were assessed by immunohistochemistry. RESULTS: Supplementation of AP (with 100 and 400 mg/kg/day) resulted in significantly attenuated infarct size (IS) (ratio of infarct area to area at risk) by 21.9 and 22.4%, respectively, in the AP-treated group, compared with that in the control group. This attenuation in IS showed correlation with improvement in biomarkers involved in the apoptotic cascades: reduction of apoptotic cells, inhibition of conversion of procaspase-3 to caspase-3, and increase of Bcl-2/Bax ratio, a determinant of cell fate. CONCLUSIONS: The findings indicate that supplementation of AP results in amelioration of myocardial infarction by inhibition of apoptosis. Thus, the current study suggests that intake of dietary fiber reduces the risk of CHD, not only by blocking steps leading to occlusion, but also by protecting against ischemic injury caused by occlusion of the arteries.