• Title/Summary/Keyword: problems in arithmetic

Search Result 103, Processing Time 0.026 seconds

A primal-dual log barrier algorithm of interior point methods for linear programming (선형계획을 위한 내부점법의 원문제-쌍대문제 로그장벽법)

  • 정호원
    • Korean Management Science Review
    • /
    • v.11 no.3
    • /
    • pp.1-11
    • /
    • 1994
  • Recent advances in linear programming solution methodology have focused on interior point methods. This powerful new class of methods achieves significant reductions in computer time for large linear programs and solves problems significantly larger than previously possible. These methods can be examined from points of Fiacco and McCormick's barrier method, Lagrangian duality, Newton's method, and others. This study presents a primal-dual log barrier algorithm of interior point methods for linear programming. The primal-dual log barrier method is currently the most efficient and successful variant of interior point methods. This paper also addresses a Cholesky factorization method of symmetric positive definite matrices arising in interior point methods. A special structure of the matrices, called supernode, is exploited to use computational techniques such as direct addressing and loop-unrolling. Two dense matrix handling techniques are also presented to handle dense columns of the original matrix A. The two techniques may minimize storage requirement for factor matrix L and a smaller number of arithmetic operations in the matrix L computation.

  • PDF

A Real-time High-speed Fuzzy Control System Using Integer Fuzzy Control Method (정수형 퍼지제어기법을 적용한 실시간 고속 퍼지제어시스템)

  • 손기성;김종혁;성은무;이상구
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.299-302
    • /
    • 2003
  • In fuzzy control systems having large volumes of fuzzy data. one of the important problems is the improvement of execution speed in the fuzzy inference and defuzzification stages. In this paper, to improve the speedup of fuzzy controllers, we use an integer line mapping algorithm to convert [0, 1] real values in the fuzzy membership functions to integer pixels. U sing this, we propose a real-time high-speed fuzzy control system and implement a fast fuzzy processor and control system using FPGAs.

  • PDF

On spanning column rank of matrices over semirings

  • Song, Seok-Zun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.337-342
    • /
    • 1995
  • A semiring is a binary system $(S, +, \times)$ such that (S, +) is an Abelian monoid (identity 0), (S,x) is a monoid (identity 1), $\times$ distributes over +, 0 $\times s s \times 0 = 0$ for all s in S, and $1 \neq 0$. Usually S denotes the system and $\times$ is denoted by juxtaposition. If $(S,\times)$ is Abelian, then S is commutative. Thus all rings are semirings. Some examples of semirings which occur in combinatorics are Boolean algebra of subsets of a finite set (with addition being union and multiplication being intersection) and the nonnegative integers (with usual arithmetic). The concepts of matrix theory are defined over a semiring as over a field. Recently a number of authors have studied various problems of semiring matrix theory. In particular, Minc [4] has written an encyclopedic work on nonnegative matrices.

  • PDF

A development of travel time estimation algorithm fusing GPS probe and loop detector (GPS probe 및 루프 검지기 자료의 융합을 통한 통행시간추정 알고리즘 개발)

  • 정연식;최기주
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.3
    • /
    • pp.97-116
    • /
    • 1999
  • The growing demand for the real time traffic information is bringing about the category and number of traffic collection mechanism in the era of ITS. There are, however, two problems in making data into information using various traffic data. First, the information making process of making data into the representative information, for each traffic collection mechanism, for the specified analysis periods is required. Second, the integration process of fusing each representative information into "the information" for each link out of each source is also required. That is, both data reduction and/or data to information process and information fusion are required. This article is focusing on the development of information fusing algorithm based on voting technique, fuzzy regression, and, Bayesian pooling technique for estimating the dynamic link travel time of networks. The proposed algorithm has been validated using the field experiment data out of GPS probes and detectors over the roadways and the estimated link travel time from the algorithm is proved to be more useful than the mere arithmetic mean from each traffic source.

  • PDF

Implementation of the Centralized Control System for Swarm Robots using Multi-Threading method (멀티 쓰레딩 방식을 이용한 군집 로봇의 중앙 제어 시스템 구현)

  • Jun, Bong-Gi
    • Journal of Digital Convergence
    • /
    • v.12 no.6
    • /
    • pp.349-354
    • /
    • 2014
  • A maze-escaping method with cooperating work of robots alongside one another will be proposed in this paper. Educational robots can communicate each other using Zigbee; however, they can't solve problems together due to their lack of arithmetic function. The robots walk upright controlled by a motion program; furthermore, they recognize an intersection or a dead-end in the use of distant sensors with sending data and receiving commands from the central control system. The maze-search algorithms were modified so that all robots can effectively navigate the maze.

Analysis of the 3rd Graders' Solving Processes of the Word Problems by Nominalization (수학 문장제의 명사화 여부에 따른 초등학교 3학년의 해결 과정 분석)

  • Kang, Yunji;Chang, Hyewon
    • Education of Primary School Mathematics
    • /
    • v.26 no.2
    • /
    • pp.83-97
    • /
    • 2023
  • Nominalization is one of the grammatical metaphors that makes it easier to mathematize the target that needs to be converted into a formula, but it has the disadvantage of making problem understanding difficult due to complex and compressed sentence structures. To investigate how this nominalization affects students' problem-solving processes, an analysis was conducted on 233 third-grade elementary school students' problem solving of eight arithmetic word problems with or without nominalization. The analysis showed that the presence or absence of nominalization did not have a significant impact on their problem understanding and their ability to convert sentences to formulas. Although the students did not have any prior experience in nominalization, they restructured the sentences by using nominalization or agnation in the problem understanding stage. When the types of nominalization change, the rate of setting the formula correctly appeared high. Through this, the use of nominalization can be a pedagogical strategy for solving word problems and can be expected to help facilitate deeper understanding.

Parallel algorithm of global routing for general purpose associative processign system (법용 연합 처리 시스템에서의 전역배선 병렬화 기법)

  • Park, Taegeun
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.4
    • /
    • pp.93-102
    • /
    • 1995
  • This paper introduces a general purpose Associative Processor(AP) which is very efficient for search-oriented applications. The proposed architecture consists of three main functional blocks: Content-Addressable Memory(CAM) arry, row logic, and control section. The proposed AP is a Single-Instruction, Multiple-Data(SIMD) device based on a CAM core and an array of high speed processors. As an application for the proposed hardware, we present a parallel algorithm to solve a global routing problem in the layout process utilizing the processing capabilities of a rudimentary logic and the selective matching and writing capability of CAMs, along with basic algorithms such a minimum(maximum) search, less(greater) than search and parallel arithmetic. We have focused on the simultaneous minimization of the desity of the channels and the wire length by sedking a less crowded channel with shorter wire distance. We present an efficient mapping technique of the problem into the CAM structure. Experimental results on difficult examples, on randomly generated data, and on benchmark problems from MCNC are included.

  • PDF

The effect of algebraic thinking-based instruction on problem solving in fraction division (분수의 나눗셈에 대한 대수적 사고 기반 수업이 문제해결에 미치는 영향)

  • Park, Seo Yeon;Chang, Hyewon
    • Education of Primary School Mathematics
    • /
    • v.27 no.3
    • /
    • pp.281-301
    • /
    • 2024
  • Many students have experienced difficulties due to the discontinuity in instruction between arithmetic and algebra, and in the field of elementary education, algebra is often treated somewhat implicitly. However, algebra must be learned as algebraic thinking in accordance with the developmental stage at the elementary level through the expansion of numerical systems, principles, and thinking. In this study, algebraic thinking-based classes were developed and conducted for 6th graders in elementary school, and the effect on the ability to solve word-problems in fraction division was analyzed. During the 11 instructional sessions, the students generalized the solution by exploring the relationship between the dividend and the divisor, and further explored generalized representations applicable to all cases. The results of the study confirmed that algebraic thinking-based classes have positive effects on their ability to solve fractional division word-problems. In the problem-solving process, algebraic thinking elements such as symbolization, generalization, reasoning, and justification appeared, with students discovering various mathematical ideas and structures, and using them to solve problems Based on the research results, we induced some implications for early algebraic guidance in elementary school mathematics.

Neuropsychological Approaches to Mathematical Learning Disabilities and Research on the Development of Diagnostic Test (신경심리학적 이론에 근거한 수학학습장애의 유형분류 및 심층진단검사의 개발을 위한 기초연구)

  • Kim, Yon-Mi
    • Education of Primary School Mathematics
    • /
    • v.14 no.3
    • /
    • pp.237-259
    • /
    • 2011
  • Mathematics learning disabilities is a specific learning disorder affecting the normal acquisition of arithmetic and spatial skills. Reported prevalence rates range from 5 to 10 percent and show high rates of comorbid disabilities, such as dyslexia and ADHD. In this study, the characteristics and the causes of this disorder has been examined. The core cause of mathematics learning disabilities is not clear yet: it can come from general cognitive problems, or disorder of innate intuitive number module could be the cause. Recently, researchers try to subdivide mathematics learning disabilities as (1) semantic/memory type, (2) procedural/skill type, (3) visuospatial type, and (4) reasoning type. Each subtype is related to specific brain areas subserving mathematical cognition. Based on these findings, the author has performed a basic research to develop grade specific diagnostic tests: number processing test and math word problems for lower grades and comprehensive math knowledge tests for the upper grades. The results should help teachers to find out prior knowledge, specific weaknesses of students, and plan personalized intervention program. The author suggest diagnostic tests are organized into 6 components. They are number sense, conceptual knowledge, arithmetic facts retrieval, procedural skills, mathematical reasoning/word problem solving, and visuospatial perception tests. This grouping will also help the examiner to figure out the processing time for each component.

FPGA based System for Pinhole Detection in Cold Rolled Steel (FPGA 기반의 냉연강판 핀홀 검출 시스템)

  • Ha, Sung-Kil;Lee, Jung Eun;Moon, Woo Sung;Baek, Kwang Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.742-747
    • /
    • 2015
  • The quality of steel plate products is determined by the number of defects and the process problems are estimated by shapes of defects. Therefore pinholes defects of cold rolled steel have to be controlled. In order to improve productivity and quality of products, within each production process, the product is inspected by an adequate inspection system individually in the lines of steelworks. Among a number of inspection systems, we focus on the pinholes detection system. In this paper, we propose an embedded system using FPGA which can detect pinholes defects. The proposed system is smaller and more flexible than a traditional system based on expensive frame grabbers and PC. In order to detect consecutive defects, FPGAs acquire two dimensional image and process the image in real time by using correlation of lines. The proposed pinholes detection algorithm decreases arithmetic operations of image processing and also we designed the hardware to shorten the data path between logics due to decreasing propagation delay. The experimental results show that the proposed embedded system detects the reliable number of pinholes in real time.