• Title/Summary/Keyword: problem solving approach

Search Result 863, Processing Time 0.025 seconds

The Effect of Problem Posing Oriented Calculus-II Instruction on Academic Success

  • Akay, Hayri;Boz, Nihat
    • Research in Mathematical Education
    • /
    • v.13 no.2
    • /
    • pp.75-90
    • /
    • 2009
  • There are concepts in calculus which are difficult to teach and learn. One of these concepts is integration. However, problem posing has not yet received the attention it deserves from the mathematics education community. There is no systematic study that deals with teaching of calculus concepts by problem posing oriented teaching strategy. In this respect this study investigated the effect of problem posing on students' (prospective teachers') academic success when problem posing oriented approach is used to teach the integral concept in Calculus-II (Mathematics-II) course to first grade prospective teachers who are enrolled to the Primary Science Teaching Program of Education Faculty. The study used intervention-posttest experimental design. Quantitative research techniques were employed to gather, analyze and interpret the data. The sample comprised 79 elementary prospective science teachers. The results indicate that problem posing approach effects academic success in a positive way and at significant level.

  • PDF

A Case Study on Instruction for Mathematically Gifted Children through The Application of Open-ended Problem Solving Tasks (개방형 과제를 활용한 수학 영재아 수업 사례 분석)

  • Park Hwa-Young;Kim Soo-Hwan
    • Communications of Mathematical Education
    • /
    • v.20 no.1 s.25
    • /
    • pp.117-145
    • /
    • 2006
  • Mathematically gifted children have creative curiosity about novel tasks deriving from their natural mathematical talents, aptitudes, intellectual abilities and creativities. More effect in nurturing the creative thinking found in brilliant children, letting them approach problem solving in various ways and make strategic attempts is needed. Given this perspective, it is desirable to select open-ended and atypical problems as a task for educational program for gifted children. In this paper, various types of open-ended problems were framed and based on these, teaming activities were adapted into gifted children's class. Then in the problem solving process, the characteristic of bright children's mathematical thinking ability and examples of problem solving strategies were analyzed so that suggestions about classes for bright children utilizing open-ended tasks at elementary schools could be achieved. For this, an open-ended task made of 24 inquiries was structured, the teaching procedure was made of three steps properly transforming Renzulli's Enrichment Triad Model, and 24 periods of classes were progressed according to the teaching plan. One period of class for each subcategories of mathematical thinking ability; ability of intuitional insight, systematizing information, space formation/visualization, mathematical abstraction, mathematical reasoning, and reflective thinking were chosen and analyzed regarding teaching, teaming process and products. Problem solving examples that could be anticipated through teaching and teaming process and products analysis, and creative problem solving examples were suggested, and suggestions about teaching bright children using open-ended tasks were deduced based on the analysis of the characteristic of tasks, role of the teacher, impartiality and probability of approaching through reflecting the classes. Through the case study of a mathematics class for bright children making use of open-ended tasks proved to satisfy the curiosity of the students, and was proved to be effective for providing and forming a habit of various mathematical thinking experiences by establishing atypical mathematical problem solving strategies. This study is meaningful in that it provided mathematically gifted children's problem solving procedures about open-ended problems and it made an attempt at concrete and practical case study about classes fur gifted children while most of studies on education for gifted children in this country focus on the studies on basic theories or quantitative studies.

  • PDF

Solving the Constrained Job Sequencing Problem using Candidate Order based Tabu Search (후보순위 기반 타부 서치를 이용한 제약 조건을 갖는 작업 순서결정 문제 풀이)

  • Jeong, Sung-Wook;Kim, Jun-Woo
    • The Journal of Information Systems
    • /
    • v.25 no.1
    • /
    • pp.159-182
    • /
    • 2016
  • Purpose This paper aims to develop a novel tabu search algorithm for solving the sequencing problems with precedence constraints. Due to constraints, the traditional meta heuristic methods can generate infeasible solutions during search procedure, which must be carefully dealt with. On the contrary, the candidate order based tabu search (COTS) is based on a novel neighborhood structure that guarantees the feasibility of solutions, and can dealt with a wide range of sequencing problems in flexible manner. Design/methodology/approach Candidate order scheme is a strategy for constructing a feasible sequence by iteratively appending an item at a time, and it has been successfully applied to genetic algorithm. The primary benefit of the candidate order scheme is that it can effectively deal with the additional constraints of sequencing problems and always generates the feasible solutions. In this paper, the candidate order scheme is used to design the neighborhood structure, tabu list and diversification operation of tabu search. Findings The COTS has been applied to the single machine job sequencing problems, and we can see that COTS can find the good solutions whether additional constraints exist or not. Especially, the experiment results reveal that the COTS is a promising approach for solving the sequencing problems with precedence constraints. In addition, the operations of COTS are intuitive and easy to understand, and it is expected that this paper will provide useful insights into the sequencing problems to the practitioners.

A study on teaching methodology for improving problem-solving skills in high school mathematics (고등학교 문제해결 능력 신장을 위한 교수 학습 방법 연구)

  • 김용규
    • Journal of the Korean School Mathematics Society
    • /
    • v.1 no.1
    • /
    • pp.165-174
    • /
    • 1998
  • This is the study on a teaching method for improving problem-solving ability in mathematics. If this method is performed step by step in solving problems, learners can approach problems in a variety of ways. This step-by-step teaching method will create some changes among learners. The purpose of this experiment was to determine what effects resulted from this method, especially which effects arose in the affective areas of learning math. For the experiment, learning materials were divided into 73 parts. And the subjects, who are low-leveled and have negative attitudes towards mathematics, were divided into two groups. One group was exposed to this method for four months (treatment group), and the other group(control group) was not. According to the result, though there were few changes, the treatment group came to be more interested in math than before and also negative attitudes towards math were reduced gradually, as compared with the control group. In this study, three factors were investigated: interest in math, attitudes toward math, and learning -achievement in math. Significant changes were found in two factors: interest in math and learning-achievement in math. No significant changes were found in the area of attitudes towards math. In conclusion, if this method is adopted and performed regularly, it is likely that the problem-solving skills will be improved and the negative attitudes towards math will be reduced.

  • PDF

Nurse Managers in a Difficult Situation on Caring Clients: A Critical Discourse Analysis (병동 간호관리자의 문제상황 관리 경험)

  • Cho, Myung Ok
    • Korean Journal of Adult Nursing
    • /
    • v.19 no.5
    • /
    • pp.56-69
    • /
    • 2007
  • Purpose: This study aimed to explore the discourses and the patterns of problem solving behaviors among the nurse managers. The focus of the study was the difficult situations in caring with patients and their families. Methods: Field study was performed at a for-profit hospital from March, 2004 to March, 2007. The participants of the study were 5 head nurses and 2 nurses in charge. The data were collected with iterative interviews and participant-observations. For the analysis of the data, taxonomy and critical discourse analyzing were applied. Results: The nurse mangers who showed wholistic patterns of behavior took the role of a broker among the client system, professional nursing system, medical system, and other allied health system. The nurse managers whose approach was profession-centered took the role of protector of nursing system. The nurse manager who practiced nurse-oriented pattern of behavior tried not to have harm against other members of health system. The experiences of nurse managers were effected from the discourses of patriarchal and market mechanism. Conclusion: The situation that provoke conflict between clients and nurses become more common with the changes to the health care system and to society. Nurse managers take the role of these conflict problems. The successful solving of conflict in a nursing care setting promotes the quality of care and satisfaction of clients. Programs for enhancing nurse's problem solving competency should anchored be in their practices.

  • PDF

A Study on Solving Engineering Problems of a Piece-removing System using 6-Sigma DMADOV Technique with ARIZ & Brainstorming (6시그마 DMADOV기반 아리즈와 브레인스토밍을 이용한 취부용 피스제거 시스템의 공학문제 해결에 관한연구)

  • Lee, Seong-Jo;Chung, Won-Ji;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.50-56
    • /
    • 2010
  • This paper presents a new design algorithm for piece-removing dynamical system, based on 6-Sigma DMADOV technique using ARIZ and Brainstorming. Our design target is the piece-removing system installed on a mobile platform of bead-grinding equipment. The 6-Sigma DMADOV technique guides us design process according to 6 steps, i.e., Define - Measure - Analyze - Design - Optimize - Verify. A Design strategy to reduce the weight of piece-removing dynamical system will be explored by using ARIZ, i.e.,(the abbreviation of Algorithm for Inventive Problem Solving in Russian). The ARIZ will result in a final solution that the height and angle control parts for a cutting tool should be replaced by a kinematical approach, rather than complicated mechatronic approach(using motors). The Optimize step is composed of two sub-steps: (i) Generating process for obtaining several ideas of piece-removing system by using Brainstorming technique, satisfying the final solution derived from the Design step using ARIZ, and (ii) Optimizing process for selecting the most optimal idea of piece-removing system by using Pugh's matrix from the viewpoints of weight, cost and accuracy. The laststep of Verify has shown that the final design obtained by the 6-Sigma DMADOV technique with ARIZ & Brainstormingcan improve an initial design with design requirements satisfied. In this paper, we have shown that ARIZ and Brainstorming can be cooperatively merged into 6-Sigma DMADOV to give us both a formulatedproblem-solving approach and diverse candidate solutions(or ideas) without trial-and-error efforts.

A Study on Optimization Approach for the Quantification Analysis Problem Using Neural Networks (신경회로망을 이용한 수량화 문제의 최적화 응용기법 연구)

  • Lee, Dong-Myung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.206-211
    • /
    • 2006
  • The quantification analysis problem is that how the m entities that have n characteristics can be linked to p-dimension space to reflect the similarity of each entity In this paper, the optimization approach for the quantification analysis problem using neural networks is suggested, and the performance is analyzed The computation of average variation volume by mean field theory that is analytical approximated mobility of a molecule system and the annealed mean field neural network approach are applied in this paper for solving the quantification analysis problem. As a result, the suggested approach by a mean field annealing neural network can obtain more optimal solution than the eigen value analysis approach in processing costs.

A study on the effectiveness of individual selection using simulated annealing in genetic algorithm (유전해법에서 시뮬레이티드 어닐링을 이용한 개체선택의 효과에 관한 연구)

  • 황인수;한재민
    • Korean Management Science Review
    • /
    • v.14 no.1
    • /
    • pp.77-85
    • /
    • 1997
  • This paper proposes an approach for individual selection in genetic algorithms to improve problem solving efficiency and effectiveness. To investigate the utility of combining simulated annealing with genetic algorithm, two experiment are conducted that compare both the conventional genetic algorithm and suggested approach. Result indicated that suggested approach significantly reduced the required time to find optimal solution in moderate-sized problems under the conditions studied. It is also found that quality of the solutions generated by suggested approach in large- sized problems is greatly improved.

  • PDF

Realtime Multiple Vehicle Routing Problem using Self-Organization Map (자기조작화 신경망을 이용한 복수차량의 실시간 경로계획)

  • 이종태;장재진
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.25 no.4
    • /
    • pp.97-109
    • /
    • 2000
  • This work proposes a neural network approach to solve vehicle routing problems which have diverse application areas such as vehicle routing and robot programming. In solving these problems, classical mathematical approaches have many difficulties. In particular, it is almost impossible to implement a real-time vehicle routing with multiple vehicles. Recently, many researchers proposed methods to overcome the limitation by adopting heuristic algorithms, genetic algorithms, neural network techniques and others. The most basic model for path planning is the Travelling Salesman Problem(TSP) for a minimum distance path. We extend this for a problem with dynamic upcoming of new positions with multiple vehicles. In this paper, we propose an algorithm based on SOM(Self-Organization Map) to obtain a sub-optimal solution for a real-time vehicle routing problem. We develope a model of a generalized multiple TSP and suggest and efficient solving procedure.

  • PDF

Design of a Static Output Feedback Stabilization Controller by Solving a Rank-constrained LMI Problem (선형행렬부등식을 이용한 정적출력궤환 제어기 설계)

  • Kim Seogj-Joo;Kwon Soonman;Kim Chung-Kyung;Moon Young-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.11
    • /
    • pp.747-752
    • /
    • 2004
  • This paper presents an iterative linear matrix inequality (LMI) approach to the design of a static output feedback (SOF) stabilization controller. A linear penalty function is incorporated into the objective function for the non-convex rank constraint so that minimizing the penalized objective function subject to LMIs amounts to a convex optimization problem. Hence, the overall procedure results in solving a series of semidefinite programs (SDPs). With an increasing sequence of the penalty parameter, the solution of the penalized optimization problem moves towards the feasible region of the original non-convex problem. The proposed algorithm is, therefore, convergent. Extensive numerical experiments are Deformed to illustrate the proposed algorithm.