• Title/Summary/Keyword: problem analysis

Search Result 16,360, Processing Time 0.047 seconds

Optimum Sensitivity of Objective Function using Equality Constraint (등제한조건을 이용한 목적함수에 대한 최적민감도)

  • Yi S.I.;Shin J.K.;Park G.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.464-469
    • /
    • 2005
  • Optimum sensitivity analysis (OSA) is the process to find the sensitivity of optimum solution with respect to the parameter in the optimization problem. The prevalent OSA methods calculate the optimum sensitivity as a post-processing. In this research, a simple technique is proposed to obtain optimum sensitivity as a result of the original optimization problem, provided that the optimum sensitivity of objective function is required. The parameters are considered as additional design variables in the original optimization problem. And then, it is endowed with equality constraints to penalize the additional variables. When the optimization problem is solved, the optimum sensitivity of objective function is simultaneously obtained as Lagrange multiplier. Several mathematical and engineering examples are solved to show the applicability and efficiency of the method compared to other OSA ones.

  • PDF

Investigation Problem-Solving in Virtual Spaces: The Knowledge Network of Experts (온라인 공간에서의 문제해결: 전문가 지식 네트워크에 관한 사례연구)

  • Koh, Joon;Jeon, Sungil
    • Knowledge Management Research
    • /
    • v.6 no.2
    • /
    • pp.149-168
    • /
    • 2005
  • Owing to the limits of IT System-driven knowledge management(KM) for innovation processes, alternative KM methods has been suggested such as: (1) the knowledge network of experts or (2) communities-of-practice. This study analyzes two cases in terms of on-line expert knowledge networks for problem-solving, with the dimensions of analysis based on a theoretical framework. By analyzing the cases of S company's expert network and Naver's Ji-sik-iN, we found that system quality(e.g., ease of use, accessibility, and searching function), information/knowledge quality(e.g., usefulness, accuracy, and timeliness), knowledge-sharing culture, social capital and relevant reward systems are important for stimulating a Q&A-based problem-solving knowledge network. Implications of the findings and future research directions are discussed.

  • PDF

Graph coloring problem solving by calculations at the DNA level with operating on plasmids

  • Feng, Xiongfeng;Kubik, K.Bogunia
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.49.3-49
    • /
    • 2001
  • In 1994 Adelman´s pioneer work demonstrated that deoxyribonucleic acid (DNA) could be used as a medium for computation to solve mathematical problems. He described the use of DNA based computational approach to solve the Hamiltonian Path Problem (HPP). Since then a number of combinatorial problems have been analyzed by DNA computation approaches including, for example: Maximum Independent Set (MIS), Maximal Clique and Satisfaction (SAT) Problems. In the present paper we propose a method of solving another classic combinatorial optimization problem - the eraph Coloring Problem (GCP), using specifically designed circular DNA plasmids as a computation tool. The task of the analysis is to color the graph so that no two nodes ...

  • PDF

GRADIENT EXPLOSION FREE ALGORITHM FOR TRAINING RECURRENT NEURAL NETWORKS

  • HONG, SEOYOUNG;JEON, HYERIN;LEE, BYUNGJOON;MIN, CHOHONG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.4
    • /
    • pp.331-350
    • /
    • 2020
  • Exploding gradient is a widely known problem in training recurrent neural networks. The explosion problem has often been coped with cutting off the gradient norm by some fixed value. However, this strategy, commonly referred to norm clipping, is an ad hoc approach to attenuate the explosion. In this research, we opt to view the problem from a different perspective, the discrete-time optimal control with infinite horizon for a better understanding of the problem. Through this perspective, we fathom the region at which gradient explosion occurs. Based on the analysis, we introduce a gradient-explosion-free algorithm that keeps the training process away from the region. Numerical tests show that this algorithm is at least three times faster than the clipping strategy.

ITERATIVE METHOD FOR SOLVING FINITE FAMILIES OF VARIATIONAL INEQUALITY AND FIXED POINT PROBLEMS OF CERTAIN MULTI-VALUED MAPPINGS

  • Olona, Musa Adewale;Narain, Ojen Kumar
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.1
    • /
    • pp.149-167
    • /
    • 2022
  • In this paper, we propose a viscosity iterative algorithm for approximating a common solution of finite family of variational inequality problem and fixed point problem for finite family of multi-valued type-one demicontractive mappings in real Hilbert spaces. A strong convergence result of the aforementioned problems were proved and some consequences of our result was also displayed. In addition, we discuss an application of our main result to convex minimization problem. The result presented in this article complements and extends many recent results in literature.

Moving-load dynamic analysis of AFG beams under thermal effect

  • Akbas, S.D.
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.649-655
    • /
    • 2022
  • In presented paper, moving load problem of simply supported axially functionally graded (AFG) beam is investigated under temperature rising based on the first shear beam theory. The material properties of beam vary along the axial direction. Material properties of the beam are considered as temperature-dependent. The governing equations of problem are derived by using the Lagrange procedure. In the solution of the problem the Ritz method is used and algebraic polynomials are used with the trivial functions for the Ritz method. In the solution of the moving load problem, the Newmark average acceleration method is used in the time history. In the numerical examples, the effects of material graduation, temperature rising and velocity of moving load on the dynamic responses ofAFG beam are presented and discussed.

Size dependent vibration of laminated micro beams under moving load

  • S.D. Akbas
    • Steel and Composite Structures
    • /
    • v.46 no.2
    • /
    • pp.253-261
    • /
    • 2023
  • The goal of this paper is to investigate dynamic responses of simply-supported laminated micro beams under moving load. In the considered micro-scale problem, the modified coupled stress theory which includes the length scale parameter is used. The governing equations of problem are derived by using the Lagrange procedure. In the solution of the problem the Ritz method is used and algebraic polynomials are used with the trivial functions for the Ritz method. In the solution of the moving load problem, the Newmark average acceleration method is used in the time history. In the numerical examples, the effects of stacking sequence of laminas, fibre orientation angles and the length scale parameter on the dynamic responses of laminated micro beams are examined and discussed.

AN INERTIAL TSENG ALGORITHM FOR SOLVING QUASIMONOTONE VARIATIONAL INEQUALITY AND FIXED POINT PROBLEM IN HILBERT SPACES

  • Shamsudeen Abiodun Kajola;Ojen Kumar Narain;Adhir Maharaj
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.3
    • /
    • pp.781-802
    • /
    • 2024
  • In this paper, we propose an inertial method for solving a common solution to fixed point and Variational Inequality Problem in Hilbert spaces. Under some standard and suitable assumptions on the control parameters, we prove that the sequence generated by the proposed algorithm converges strongly to an element in the solution set of Variational Inequality Problem associated with a quasimonotone operator which is also solution to a fixed point problem for a demimetric mapping. Finally, we give some numerical experiments for supporting our main results and also compare with some earlier announced methods in the literature.

Receding contact problem of an orthotropic layer supported by rigid quarter planes

  • Huseyin Oguz;Ilkem Turhan Cetinkaya;Isa Comez
    • Structural Engineering and Mechanics
    • /
    • v.91 no.5
    • /
    • pp.459-468
    • /
    • 2024
  • This study presents a frictionless receding contact problem for an orthotropic elastic layer. It is assumed that the layer is supported by two rigid quarter planes and the material of the layer is orthotropic. The layer of thickness h is indented by a rigid cylindrical punch of radius R. The problem is modeled by using the singular integral equation method with the help of the Fourier transform technique. Applying the boundary conditions of the problem the system of singular integral equations is obtained. In this system, the unknowns are the contact stresses and contact widths under the punch and between the layer and rigid quarter planes. The Gauss-Chebyshev integration method is applied to the obtained system of singular integral equations of Cauchy type. Five different orthotropic materials are considered during the analysis. Numerical results are presented to interpret the effect of the material property and the other parameters on the contact stress and the contact width.

Structural analysis of cracked R.C. members subjected to sustained loads and imposed deformations

  • Mola, F.;Gatti, M.C.;Meda, G.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.6
    • /
    • pp.637-650
    • /
    • 2001
  • A structural analysis of cracked R.C. members under instantaneous or sustained loads and imposed displacements is presented. In the first part of the paper the problem of deriving feasible moment-curvature diagrams for a long term analysis of R.C. sections is approached in an exact way by using the Reduced Relaxation Function Method in state I uncracked and the method suggested by CEB in state II cracked. In both states the analysis of the main parameters governing the problem has shown that it is possible to describe the concrete creep behaviour in an approximate way by using the algebraic formulation connected to the Effective Modulus Method. In this way the calculations become quite simple and can be applied in design practice without introducing significant errors. Referring to continuous beams, the structural analysis is then approached in a general way, applying the Force Method and the Principle of Virtual Works. Finally, considering single members, the structural analysis is performed by means of a graphical procedure based on the application of feasible moment-rotation diagrams which allow to easily solve various structural problems and to point out the most interesting aspects of the long term behaviour of cracked R.C. members with rigid or elastically deformable redundant restraints.