References
- Akbas, S.D. (2013a), "Geometrically nonlinear static analysis of edge cracked Timoshenko beams composed of functionally graded material", Mathem. Prob. Eng., 2013. https://doi.org/10.1155/2013/871815.
- Akbas, S.D. (2013b), "Free vibration characteristics of edge cracked functionally graded beams by using finite element method", Int. J. Eng. Trends Technol., 4(10), 4590-4597.
- Akbas, S.D. (2014), "Free vibration of axially functionally graded beams in thermal environment", Int. J. Eng. Appl. Sci., 6(3), 37-51. https://doi.org/10.24107/ijeas.251224.
- Akbas, S.D. (2015a), "On post-buckling behavior of edge cracked functionally graded beams under axial loads", Int. J. Struct. Stab. Dyn., 15(04), 1450065. https://doi.org/10.1142/S0219455414500655.
- Akbas, S.D. (2015b), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421.
- Akbas, S.D. (2017a), "Stability of a non-homogenous porous plate by using generalized differantial quadrature method", Int. J. Eng. Appl. Sci., 9(2), 147-155. https://doi.org/10.24107/ijeas.322375.
- Akbas, S.D. (2017b), "Post-buckling responses of functionally graded beams with porosities", Steel Compos. Struct., 24(5), 579-589. https://doi.org/10.12989/scs.2017.24.5.579.
- Akbas, S.D. (2018a), "Thermal post-buckling analysis of a laminated composite beam", Struct. Eng. Mech., 67(4), 337-346. http://dx.doi.org/10.12989/sem.2018.67.4.337.
- Akbas, S.D. (2018b), "Investigation of static and vibration behaviors of a functionally graded orthotropic beam", Balikesir universitesi Fen Bilimleri Enstitusu Dergisi, 1-14. https://doi.org/10.25092/baunfbed.343227.
- Akbas, S.D. (2018c), "Geometrically nonlinear analysis of functionally graded porous beams", Wind Struct., 27(1), 59-70. https://doi.org/10.12989/was.2018.27.1.059.
- Akbas, S.D. (2019a), "Hygro-thermal nonlinear analysis of a functionally graded beam", J. Appl. Comput. Mech., 5(2), 477-485. http://dx.doi.org/10.22055/JACM.2018.26819.1360
- Akbas, S.D. (2019b), "Hygro-thermal post-buckling analysis of a functionally graded beam", Coup. Syst. Mech., 8(5), 459-471. http://dx.doi.org/10.12989/csm.2019.8.5.459.
- Akbas, S.D. (2020), "Geometrically nonlinear analysis of axially functionally graded beams by using finite element method", J. Comput. Appl. Mech., 51(2), 411-416. http://doi.org/10.22059/JCAMECH.2020.309019.548.
- Akbas, S.D. (2021a), "Forced vibration responses of axially functionally graded beams by using Ritz Method", J. Appl. Comput. Mech., 7(1), 109-115. http://dx.doi.org/10.22055/JACM.2020.34865.2491.
- Akbas, S.D. (2021b), "Dynamic analysis of axially functionally graded porous beams under a moving load", Steel Compos. Struct., 39(6), 811-821. https://doi.org/10.12989/scs.2021.39.6.811.
- Akbas, S.D. and Kocaturk, T. (2012), "Post-buckling analysis of Timoshenko beams with temperature-dependent physical properties under uniform thermal loading", Struct. Eng. Mech. 44(1), 109-125. https://doi.org/10.12989/sem.2012.44.1.109.
- Akbas, S.D. and Kocaturk, T. (2013), "Post-buckling analysis of functionally graded three-dimensional beams under the influence of temperature", J. Thermal Stresses, 36(12), 1233-1254. https://doi.org/10.1080/01495739.2013.788397.
- Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Mathem. Modelling, 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006.
- Benahmed, A., Fahsi, B., Benzair, A., Zidour, M., Bourada, F. and Tounsi, A. (2019), "Critical buckling of functionally graded nanoscale beam with porosities using nonlocal higher-order shear deformation", Struct. Eng. Mech., 69(4), 457-466. https://doi.org/10.12989/sem.2019.69.4.457.
- Chen, X.L. and Liew, K.M. (2004), "Buckling of rectangular functionally graded material plates subjected to nonlinearly distributed in-plane edge loads", Smart Mater. Struct., 13(6), 1430. https://doi.org/10.1088/0964-1726/13/6/014.
- Ebrahimi, F. and Jafari, A. (2016), "A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities", J. Eng., 2016. http://dx.doi.org/10.1155/2016/9561504.
- Esen, I. (2019), "Dynamic response of functional graded Timoshenko beams in a thermal environment subjected to an accelerating load", Europ. J. Mech.-A/Solids, 78, 103841. https://doi.org/10.1016/j.ijmecsci.2019.01.033.
- Fazzolari, F.A. (2018), "Generalized exponential, polynomial and trigonometric theories for vibration and stability analysis of porous FG sandwich beams resting on elastic foundations", Compos. Part B: Eng., 136, 254-271. https://doi.org/10.1016/j.compositesb.2017.10.022.
- Ghayesh, M.H. (2018), "Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams", Appl. Mathem. Modelling, 59, 583-596. https://doi.org/10.1016/j.apm.2018.02.017.
- Ghayesh, M.H., Farokhi, H., Gholipour, A. and Tavallaeinejad, M. (2017), "Nonlinear bending and forced vibrations of axially functionally graded tapered microbeams", Int. J. Eng. Sci., 120, 51-62. https://doi.org/10.1016/j.ijengsci.2017.03.010.
- Hosseini, S.A., Rahmani, O. and Bayat, S. (2021), "Thermal effect on forced vibration analysis of FG nanobeam subjected to moving load by Laplace transform method", Mech. Based Des. Struct. Mach., 1-20. https://doi.org/10.1080/15397734.2021.1943671.
- Hussain, M. and Naeem, M.N. (2019), "Vibration characteristics of zigzag and chiral FGM rotating carbon nanotubes sandwich with ring supports", J. Mech. Eng. Sci., Part C. 233(16), 5763-5780. https://doi.org/10.1177/0954406219855095.
- Jouneghani, F.Z., Dimitri, R. and Tornabene, F. (2018), "Structural response of porous FG nanobeams under hygro-thermo-mechanical loadings", Compos. Part B: Eng., 152, 71-78. https://doi.org/10.1016/j.compositesb.2018.06.023.
- Kirlangic, O. and Akbas, S.D. (2021), "Dynamic responses of functionally graded and layered composite beams", Smart Struct. Syst., 27(1), 115-122. https://doi.org/10.12989/sss.2021.27.1.115.
- Kocaturk, T. and Akbas, S.D. (2013), "Thermal post-buckling analysis of functionally graded beams with temperature-dependent physical properties", Steel Compos. Struct., 15(5), 481-505. https://doi.org/10.12989/scs.2013.15.5.481.
- Liu, B., Guo, M., Liu, C. and Xing, Y. (2019), "Free vibration of functionally graded sandwich shallow shells in thermal environments by a differential quadrature hierarchical finite element method", Compos. Struct., 225, 111173. https://doi.org/10.1016/j.compstruct.2019.111173.
- Liu, H., Zhang, Q. and Ma, J. (2021), "Thermo-mechanical dynamics of two-dimensional FG microbeam subjected to a moving harmonic load", Acta Astronautica, 178, 681-692. https://doi.org/10.1016/j.actaastro.2020.09.045.
- Malekzadeh, P. and Monajjemzadeh, S.M. (2013), "Dynamic response of functionally graded plates in thermal environment under moving load", Compos. Part B: Eng., 45(1), 1521-1533. https://doi.org/10.1016/j.compositesb.2012.09.022.
- Pegios, I.P. and Hatzigeorgiou, G.D. (2018), "Finite element free and forced vibration analysis of gradient elastic beam structures", Acta Mechanica, 229(12), 4817-4830. https://doi.org/10.1007/s00707-018-2261-9.
- Rajasekaran, S. and Khaniki, H.B. (2019), "Size-dependent forced vibration of non-uniform bi-directional functionally graded beams embedded in variable elastic environment carrying a moving harmonic mass", Appl. Mathem. Modelling, 72, 129-154. https://doi.org/10.1016/j.apm.2019.03.021.
- Reddy J.N. and Chin C.D, (1998), "Thermoelastical analysis of functionally graded cylinders and plates", J. Thermal Stresses, 21(6), 593-626, 1998. https://doi.org/10.1080/01495739808956165.
- Sharma, P., Singh, R. and Hussain, M. (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, https://doi.org/10.1177/0954406219888234.
- Sheng, G.G. and Wang, X. (2019), "Nonlinear forced vibration of functionally graded Timoshenko microbeams with thermal effect and parametric excitation", Int. J. Mech. Sci., 155, 405-416. https://doi.org/10.1016/j.ijmecsci.2019.03.015.
- Simsek, M., Kocaturk, T. and Akbas, S.D. (2012), "Dynamic behavior of an axially functionally graded beam under action of a moving harmonic load", Compos. Struct., 94(8), 2358-2364. https://doi.org/10.1016/j.compstruct.2012.03.020.
- Sofiyev, A.H. (2010), "Dynamic response of an FGM cylindrical shell under moving loads", Compos. Struct., 93(1), 58-66. https://doi.org/10.1016/j.compstruct.2010.06.015.
- Taati, E. and Fallah, F. (2019), "Exact solution for frequency response of sandwich microbeams with functionally graded cores", J. Vib. Control, 25(19-20), 2641-2655. https://doi.org/10.1177/1077546319864645.
- Tao, C., Fu, Y. M. and Dai, H. L. (2016), "Nonlinear dynamic analysis of fiber metal laminated beams subjected to moving loads in thermal environment", Compos. Struct., 140, 410-416. https://doi.org/10.1016/j.compstruct.2015.12.011.
- Van Bui, T. (2017), "Effect of temperature and porosities on dynamic response of functionally graded beams carrying a moving load", Sci. Technol. Develop. J., 20(K2), 24-33. https://doi.org/10.32508/stdj.v20iK2.445.
- Wang, Y. and Wu, D. (2016), "Thermal effect on the dynamic response of axially functionally graded beam subjected to a moving harmonic load", Acta Astronautica, 127, 171-181. https://doi.org/10.1016/j.actaastro.2016.05.030.
- Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aeros. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
- Wu, D., Liu, A., Huang, Y., Huang, Y., Pi, Y. and Gao, W. (2018), "Dynamic analysis of functionally graded porous structures through finite element analysis", Eng. Struct., 165, 287-301. https://doi.org/10.1016/j.engstruct.2018.03.023.
- Yang, J., Chen, D. and Kitipornchai, S. (2018), "Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method", Compos. Struct., 193, 281-294. https://doi.org/10.1016/j.compstruct.2018.03.090.
- Zhao, J., Xie, F., Wang, A., Shuai, C., Tang, J. and Wang, Q. (2019), "Vibration behavior of the functionally graded porous (FGP) doubly-curved panels and shells of revolution by using a semi-analytical method", Compos. Part B: Eng., 157, 219-238. https://doi.org/10.1016/j.compositesb.2018.08.087.