• 제목/요약/키워드: probiotics properties

검색결과 177건 처리시간 0.026초

복합 생균제의 생산과 산란계에서 생균제의 적정 급여 수준에 의한 산란 효과 (Production of Multiple Probiotics and the Performance of Laying Hens by Proper Level of Dietary Supplementation)

  • 김형준;이봉기;석호봉
    • 한국가금학회지
    • /
    • 제38권3호
    • /
    • pp.173-179
    • /
    • 2011
  • 본 연구는 복합 생균제를 사료 공급을 통하여 갈색 산란계(Hy-Line Brown)에 산란 초기 21~40주, 산란 중기인 41~65주로 나누어 산란계의 생산성과 산란에 미치는 영향을 조사하였다. 복합 생균제를 생산하고 생균제를 구성하는 균주의 특성에 대하여 내산성(pH 2.5), 내담즙성(Oxgall 0.3%) 및 특정 병원균에 대한 항균력을 시험하였고, 산란 시기별로 분변 내 미생물의 변화를 조사하였다. 생균제는 4종의 복합생균으로 각각의 대두박 기질에 의한 고상식 발효물로서 원료에서 생산까지 9단계 과정을 거쳐 생산하였다. 복합 생균제를 구성하는 Bacillus subtilis, Lactobacillus plantarum, Enterococcus faecium에서 높은 내산성, 내담즙성, 항균력 등이 나타나는 것을 확인하였으며, Saccharomyces cerevisiae는 항균력이 낮은 것으로 나타났다. 산란 생산성은 급여 후 대조구에 비해 높은 산란율을 보였으나, 0.1% 급여구와 0.2% 급여구 사이의 유의차는 없었다(P>0.05). 난중에 있어서 산란 초기 21~40주는 대조구와 유의차를 보였으나, 0.1% 급여구와 0.2% 급여구간에는 유의차가 인정되지 않았다(P>0.05). 그러나 산란 중기에서 0.2% 급여구와 0.1% 급여구 사이에 유의차를 보였으며, 대조구와도 유의성 각각 인정되었다(P<0.05). 폐사율은 대조구와 비교하였을 때 0.2% 급여구에서 폐사율이 격감되는 유의차가 있었고(P<0.05) 산란 시기별로는 산란 초기에 0.2% 급여구가 폐사율 감소를 보였으나, 산란 중기에는 0.1% 급여구와의 유의차가 나타나지 않았다. 사료 섭취량은 산란 전기에는 유의성이 없었으나, 산란 후기의 0.2% 급여구에서 유의적인 증가가 인정되었다(P<0.05). 분변 미생물 조사에서 복합 생균제 급여 후 0.1% 급여구의 전기, 중기 모두 Lactobacillus가 유의적으로 증가되었으나, Coli form은 중기에 0.1%, 0.2% 급여구에서 각각 유의적으로 감소하는 경향을 나타내었다(P<0.05). 결론적으로 산란계 사료 내 복합 생균제의 첨가는 산란율과 난중의 향상과 분변 미생물의 정상적인 변화로 폐사율을 감소시키는 것으로 사료된다.

Probiotic Potential of Pediococcus acidilactici and Enterococcus faecium Isolated from Indigenous Yogurt and Raw Goat Milk

  • Sarkar, Shovon Lal;Hossain, Md. Iqbal;Monika, Sharmin Akter;Sanyal, Santonu Kumar;Roy, Pravas Chandra;Hossain, Md. Anwar;Jahid, Iqbal Kabir
    • 한국미생물·생명공학회지
    • /
    • 제48권3호
    • /
    • pp.276-286
    • /
    • 2020
  • Probiotics are live microorganisms that, when administered in adequate amounts, confer health benefits to the host. This study was conducted for the isolation of potential lactic acid bacteria (LAB) with probiotic properties from goat milk and yogurt. Several tests were conducted in vitro using the standard procedures for evaluating the inhibitory spectra of LAB against pathogenic bacteria; tolerance to NaCl, bile salt, and phenol; hemolytic, milk coagulation, and bile salt hydrolase activities; gastrointestinal transit tolerance; adhesion properties; and antibiotic susceptibility. Among 40 LAB strains screened according to culture characteristics, five isolates exhibited antagonistic properties. Three were identified as Pediococcus acidilactici, and two were identified as Enterococcus faecium, exploiting 16S rRNA gene sequencing. All the isolates succeeded in the gastrointestinal transit tolerance assay and successively colonized mucosal epithelial cells. Based on the results of these in vitro assays, both P. acidilactici and E. faecium can be considered as potential probiotic candidates.

Probiotic Properties of Lactobacillus brevis KU200019 and Synergistic Activity with Fructooligosaccharides in Antagonistic Activity against Foodborne Pathogens

  • Kariyawasam, Kariyawasam Majuwana Gamage Menaka Menike;Yang, Seo Jin;Lee, Na-Kyoung;Paik, Hyun-Dong
    • 한국축산식품학회지
    • /
    • 제40권2호
    • /
    • pp.297-310
    • /
    • 2020
  • This study aims to evaluate the probiotic properties of Lactobacillus brevis (L. brevis) KU200019 and the synergistic activity with prebiotics on antimicrobial activity, and the potential application as an adjunct culture in fermented dairy products. The commercial strain, L. brevis ATCC 14869 was used as reference strain. L. brevis KU200019 was showed higher viability in simulated gastric (99.38±0.21%) and bile (115.10±0.13%) conditions compared to reference strain. L. brevis KU200019 exhibited antimicrobial activity against various foodborne pathogens. The supplementation of fructooligosaccharides (FOS) enhanced viability of lactic acid bacteria (>8 Log CFU/mL) and antioxidant activity [2,2-diphenyl-2-picrylhydrazyl radical assay (DPPH) assay, 31.23±1.14%; 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay, 38.82±1.46%] in fermented skim milk during refrigerated storage. L. brevis KU200019 was distinguished from the reference strain by its higher probiotic potential, antimicrobial activity, and higher antioxidant activity in fermented milk. Therefore, L. brevis KU200019 with FOS was demonstrated promising properties for further application in fermented dairy products with enhanced safety and quality.

Lactobacillus plantarum DR7 Reduces Cholesterol via Phosphorylation of AMPK That Down-regulated the mRNA Expression of HMG-CoA Reductase

  • Lew, Lee-Ching;Choi, Sy-Bing;Khoo, Boon-Yin;Sreenivasan, Sasidharan;Ong, Kee-Leong;Liong, Min-Tze
    • 한국축산식품학회지
    • /
    • 제38권2호
    • /
    • pp.350-361
    • /
    • 2018
  • Hypercholesterolemia is one of the primary risk factors for cardiovascular diseases. The use of lactobacilli probiotics to reduce blood cholesterol levels have been extensively reported. However, more information is needed to evaluate the possible mechanisms involved and to identify possible targets for further therapeutic development. In this study, strains of lactobacilli were screened based on the ability to assimilate cholesterol, and prevention of cholesterol accumulation in hepatic (HepG2) and intestinal (HT-29) cells. Cell free supernatant (CFS) from Lactobacillus plantarum DR7 showed a higher ability to assimilate cholesterol, reduction in cholesterol accumulation in both HepG2 and HT-29 cells, accompanied by reduced mRNA expression of HMG-CoA reductase (HMGCR) in HepG2 (p<0.05), compared to other lactobacilli. The reduction of HMGCR expression was also diminished in the presence of an AMPK inhibitor (Compound C), suggesting that L. plantarum DR7 exerted its effect via the AMPK pathway, typically via the phosphorylation of AMPK instead of the AMPK mRNA expression in HepG2 (p<0.05). Altogether, our present study illustrated that lactobacilli could exert cholesterol lowering properties along the AMPK pathway, specifically via phosphorylation of AMPK that led to reduced expression of HMGCR.

Intestinal Colonization Characteristics of Lactobacillus spp. Isolated from Chicken Cecum and Competitive Inhibition Against Salmonella typhimurium

  • Shin, Jang-Woo;Kang, Jong-Koo;Jang, Keum-Il;Kim, Kwang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권4호
    • /
    • pp.576-582
    • /
    • 2002
  • Probiotics are live microbial feed supplements which beneficially affect the host animal by improving its intestinal microflora. To select the best Lactobacillus spp. as a chicken probiotic, probiotic characteristics of 10 selected Lactobacillus strains isolated from chicken cecum or obtained from KCTC were investigated. The strains were examined for resistance to pH 2.0 and 0.3% oxgall, and adhesion to cecal mucus and cecal epithelial cells. All strains grew in MRS containing 0.3% oxgall. However, Lb. plantarum AYM-10, Lb. fermentum YL-3, AYM-3, and Lb. paracasei YL-6 showed relatively high resistance to 0.3% oxgall. Lb. fermentum YL-3, YM-5, AYM-3, and Lb. paracasei YL-6 survived 4 hours of incubation at pH 2.0. Lb. fermentum YL-3, KCTC 3112, and Lb. plantarum AYL-5 were strongly adhesive to cecal mucus, while the rest showed moderate or low adhesion. Lb. plantarum AYM-10, AYL-1, and AYL-5 had good adhering properties to cecal epithelial cells (30.7$\pm$10.82, 40.2$\pm$20.90, and 14.5$\pm$4.22, respectively). Lb. fermentum YL-3, AYM-3, and KCTC 3547 showed Intermediate adhesion ability, and Lb. plantarum showed better adhesion ability to cecal epithelial cells than Lb. fermentum. Attached Lb. fermentum YL-3 to cecum after 60 min incubation was confirmed using CLSM. Lb. fermentum YL-3 attached to a matrix which was composed of a mucus layer adjacent to intracrypts and pericryptal region. Some Lb. fermentum YL-3 bound to mucosal epithelial cells. From these results, Lb. fermentum YL-3 was selected as a chicken probiotic. In vivo trials of chicks inoculated with Lb. fermentum YL-3 had decreased Salmonella population in cecal contents and livers (p<0.5).

Isolation of Lactic Acid Bacteria Showing Antioxidative and Probiotic Activities from Kimchi and Infant Feces

  • Ji, Keunho;Jang, Na Young;Kim, Young Tae
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권9호
    • /
    • pp.1568-1577
    • /
    • 2015
  • The purpose of this study was to investigate lactic acid bacteria with antioxidative and probiotic activities isolated from Korean healthy infant feces and kimchi. Isolates A1, A2, S1, S2, and S3 were assigned to Lactobacillus sp. and isolates A3, A4, E1, E2, E3, and E4 were assigned to Leuconostoc sp. on the basis of their physiological properties and 16S ribosomal DNA sequence analysis. Most strains were confirmed as safe bioresources through nonhemolytic activities and non-production of harmful enzymes such as β-glucosidase, β-glucuronidase and tryptophanase. The 11 isolates showed different resistance to acid and bile acids. In addition, they exhibited antibacterial activity against foodborne bacteria, especially Bacillus cereus, Listeria monocytogenes, and Escherichia coli. Furthermore, all strains showed significantly high levels of hydrophobicity. The antioxidant effects of culture filtrates of the 11 strains included 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging capacity, 2.2'-azino-bis (2-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical cation scavenging activity, and superoxide dismutase activity. The results revealed that most of the culture filtrates have effective scavenging activity for DPPH and ABTS radicals. All strains appeared to have effective superoxide dismutase activity. In conclusion, the isolated strains A1, A3, S1, and S3 have significant probiotic activities applicable to the development of functional foods and health-related products. These strains might also contribute to preventing and controlling several diseases associated with oxidative stress, when used as probiotics.

섬유소-펙틴 분해력이 있는 새로운 Aspergillus tubingensis의 분리와 특성 규명 (Isolation and Characterization of a Novel Aspergillus tubingensis with a Hydrolyzing Activity of Cellulose-pectin Complex)

  • 김영민;서원숙;홍진영;최홍서;김주환
    • 한국미생물·생명공학회지
    • /
    • 제31권2호
    • /
    • pp.124-128
    • /
    • 2003
  • 대전광역시 근교의 야산과 들판 등지에서 썩은 나뭇잎, 짚, 흙을 채취하여 각각을 배양한 다음 Congo red test에 의해 cellulase 활성을 보이는 균주를 선별하였다. Genomic DNA를 분리한 후 PCR을 수행하여 DNA sequence를 Gene Bank를 통해 분석한 결과 A. tubingensis로 밝혀졌다. 이것을 배양하여 상등액을 crude enzyme으로 사용하여 온도와 pH를 달리하면서 효소의 활성정도를 측정하였다. 대조균주로 A. oryzae KCTC 6291를 이용하였고, 본 연구를 통하여 분리한 균주인 A. tubingensis가 생산하는 cellulase는 A. oryzae의 cellulase에 비하여 각각 다른 온도와 pH에서 높은 안정성을 보여주었다. A. tubingensis는 각각의 온도에서 활성의 정도가 비슷했으며, 45$^{\circ}C$, 55$^{\circ}C$에서 높은 활성을 나타내고 있지만, 고르게 활성이 나타났다. 또한 pH 12.0에서 가장 높은 활성을 보여 주었고, pH 2.0, 3.0, 4.0에서는 양쪽 모두 거의 활성이 없었으며, 중성, 염기성에 대해서 활성에는 큰 변화가 없었다. 따라서, 분리 동정한 A. tubingensis는 온도와 pH에서 고르게 활성을 나타내므로 생균제로 활용할 수 있는 범위가 클 것으로 여겨진다.

Screening of Immunostimulatory Probiotic Lactic Acid Bacteria from Chicken Feces as Animal Probiotics

  • Lee, Eun-Kyung;Lee, Na-Kyoung;Lee, Si-Kyung;Chang, Hyo-Ihl;Paik, Hyun-Dong
    • 한국축산식품학회지
    • /
    • 제30권4호
    • /
    • pp.634-640
    • /
    • 2010
  • The principal objective of this study was to screen and select acid-tolerant Lactobacillus strains from chicken feces, feeds, and other sources. Fourty six strains evidencing acid tolerance (pH 3.5) were isolated in this study. Among them, nine strains exhibited marked immunostimulatory effects. Therefore, nine candidate strains were characterized for probiotic use. In order to evaluate macrophage activation, NO production was measured using RAW 264.7 cells. In particular, three strains (FC812, FC222, and FC113) evidenced the highest levels of NO production measured at $38.39{\pm}20.01,\;35.06{\pm}27.73$, and $33.88{\pm}15.99{\mu}M$, respectively, at a concentration of $10^{8}CFU/mL$. The majority of strains, with the exception of strain FC322, evidenced marked resistance to artificial gastric juice (pH 2.5 with 1%(w/v) pepsin). Additionally, strains FC222, FC421, FC511, and FC721 were highly resistant to artificial bile acid (0.1%(w/v) oxgall), whereas strains FC113, FC322, FC422, FC621, and FC812 were the least resistant to bile. All nine strains exerted antimicrobial effects against chickenrelated pathogens. Additionally, all nine strains were found to be resistant to several antibiotics. The isolated strains, except for strain FC322, were tentatively identified as Lactobacillus salivarius, using an API 50 CHL kit. These results demonstrate that some probiotic organisms may potentially probiotic properties, and thus may serve as an effective alternative to antibiotics in animal applications.

Probiotic Potential of Enterococcus faecium Isolated from Chicken Cecum with Immunomodulating Activity and Promoting Longevity in Caenorhabditis elegans

  • Sim, Insuk;Park, Keun-Tae;Kwon, Gayeung;Koh, Jong-Ho;Lim, Young-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권6호
    • /
    • pp.883-892
    • /
    • 2018
  • Probiotics, including Enterococcus faecium, confer a health benefit on the host. An Enterococcus strain was isolated from healthy chicken cecum, identified as E. faecium by 16S rDNA gene sequence analysis, and designated as E. faecium L11. To evaluate the potential of E. faecium L11 as a probiotic, the gastrointestinal tolerance, immunomodulatory activity, and lifespan extension properties of the strain were assayed. E. faecium L11 showed >66% and >62% survival in artificial gastric juice (0.3% pepsin, pH 2.5) and simulated small intestinal juice (0.5% bile salt and 0.1% pancreatin), respectively. Heat-killed E. faecium L11 significantly (p < 0.05) increased immune cell proliferation compared with controls, and stimulated the production of cytokines (IL-6 and $TNF-{\alpha}$) by activated macrophages obtained from ICR mice. In addition, E. faecium L11 showed a protective effect against Salmonella Typhimurium infection in Caenorhabditis elegans. In addition, feeding E. faecium L11 significantly (p < 0.05) extended the lifespan of C. elegans compared with the control. Furthermore, genes related to aging and host defense were upregulated in E. faecium L11-fed worms. In conclusion, E. faecium L11, which prolongs the lifespan of C. elegans, may be a potent probiotic supplement for livestock.