• Title/Summary/Keyword: probiotic safety

Search Result 72, Processing Time 0.025 seconds

Suggestion of a Safety Evaluation Procedure to Improve Probiotic Safety (프로바이오틱스 안전성 문제 개선을 위한 안전성 평가방법의 제안)

  • Kim, Sejeong;Yoon, Yohan;Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.38 no.2
    • /
    • pp.99-111
    • /
    • 2020
  • Probiotics are actively being studied for their efficacious anticancer, anticholesterol, and antidiabetic properties. As novel probiotic strains are being developed continuously, new strain-specific safety issues may be reported. Therefore, a procedure for the safety evaluation of probiotic strains is needed. In this study, we investigated the current status of domestic and foreign guidelines for the evaluation of safety of probiotics and suggested a general probiotic safety evaluation process. In other countries, the guidelines for probiotic evaluation are provided and managed separately. However, in Korea, general guidelines are provided regarding the use of functional ingredients, and specific guidelines for the use of probiotics are lacking. A review step based on the characteristics of the probiotics has been introduced in the procedure for safety evaluation of probiotics. Additionally, it has been suggested that the safety evaluation process should consider the results of the functional and genomic analysis for strain identification. Moreover, the factors to be evaluated are presented separately for the notified and non-notified strains. The suggested evaluation procedure may ensure the safety of probiotics, thereby promoting enhanced utilization of probiotics as functional products.

Effect of Probiotics on Risk Factors for Human Disease: A Review (인간 질병의 위험 요인에 대한 Probiotics의 효과: 총설)

  • Chon, Jung-Whan;Kim, Dong-Hyeon;Kim, Hyun-Sook;Kim, Hong-Seok;Hwang, Dae-Geun;Song, Kwang-Young;Yim, Jin-Hyuk;Choi, Dasom;Lim, Jong-Soo;Seo, Kun-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.17-29
    • /
    • 2014
  • GRAS probiotics can be used to modulate intestinal microbiota and to alleviate various gastrointestinal disorders. In several recent studies, researchers have explored the potential expansion and usability of probiotics to reduce the risk factors associated with diseases, including obesity, hypercholesterolemia, arterial hypertension, hyperhomocysteinemia, and oxidative stress. In this review, our aim was to clarify the mechanism underlying interactions between hosts (animal or human) and probiotics and the beneficial effects of probiotics on human health.

  • PDF

Development of Probiotic Products and Challenges (프로바이오틱 제품 개발 동향과 과제)

  • Seo, Jae-Gu;Lee, Gwa-Soo;Kim, Jin-Eung;Chung, Myung-Jun
    • KSBB Journal
    • /
    • v.25 no.4
    • /
    • pp.303-310
    • /
    • 2010
  • Probiotics beneficially affect the health of the host via various mechanisms in the intestine. Recent developments in probiotic products have mainly been made to maximize probiotic effects in human. In this regard, probiotic products containing doubly coated or encapsulated cells, multi-species probiotics, or high viable cell number (1010 viable cells/gram or more) have been developed and are already available in the market. Until now, the majority of probiotics contain live cells but little attention has been paid to other alternative products such as heat-killed cell or bacteriocin-containing ones, which could have broad applications due to advantages over live cell-based probiotics, such as safety and stability. In addition, genetically engineered lactic acid bacteria could be of great importance in the field of alimentary health if they are carefully designed for biological safety. Although a number of probiotics are marketed by claiming health benefits, regulations for health claims will be more stringent. Therefore sufficient scientific and clinical evidences supporting the safety and efficacy of the potential probiotic strain will be required by the regulatory authority for a health claim, which thus may have a huge impact on the future probiotic market.

Potential Probiotic Characteristics and Safety Assessment of Lactobacillus rhamnosus SKG34 Isolated from Sumbawa Mare's Milk

  • Sujaya, I Nengah;Suwardana, Gede Ngurah Rsi;Gotoh, Kazuyoshi;Sumardika, I Wayan;Nocianitri, Komang Ayu;Sriwidyani, Ni Putu;Putra, I Wayan Gede Artawan Eka;Sakaguchi, Masakiyo;Fatmawati, Ni Nengah Dwi
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.1
    • /
    • pp.51-62
    • /
    • 2022
  • Lactobacillus rhamnosus SKG34 (LrSKG34), a potential probiotic strain, was successfully isolated from Sumbawa Mare's milk. Our previous studies showed that the strain is resistant to gastrointestinal conditions, possesses antioxidant activity, and lowers blood cholesterol levels. Further clarification of the potential probiotic characteristics and safety assessment are necessary. This study aimed to evaluate the adhesion of LrSKG34 to Caco-2 cell monolayers and its effect on mucosal integrity in vitro. We also examined the LrSKG34 safety profile based on antimicrobial susceptibility testing, haemolytic activity determination, Caco-2 cell monolayer translocation evaluation, and in vivo investigation of the effect of LrSKG34 on the physiology, biochemical markers, and histopathological appearance of major organs in an animal model. LrSKG34 attached to Caco-2 cell monolayers and maintained mucosal integrity in vitro. The typical resistance of lactobacilli to ciprofloxacin, gentamicin, vancomycin, trimethoprim-sulfamethoxazole, and metronidazole was confirmed for LrSKG34. No haemolytic activity was observed on blood agar plates, and no LrSKG34 translocation was observed in Caco-2 cell monolayers. Administration of LrSKG34 to Sprague-Dawley rats did not adversely affect body weight. No abnormalities in hematological parameters, serum biochemistry levels, or histopathological structures of major organs were observed in LrSKG34-treated rats. Collectively, the results implicate LrSKG34 as a promising and potentially safe probiotic candidate for further development.

Isolation of Weissella strains as potent probiotics to improve antioxidant activity of salted squid by fermentation

  • Le, Bao;Yang, Seung Hwan
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.1
    • /
    • pp.93-100
    • /
    • 2018
  • The aim of this study was to enhance the antioxidant activity of salted squid by inoculation of two Weissella spp. strains (W. cibaria FB-069 and W. viridescens FB-077) isolated from traditional Korea salted squid. The safety and probiotic potential characteristics of these two strains were evaluated. The safety of these strains was analyzed based on hemolytic activity, mucin degradation, biogenic amino production, and resistance to antibiotics. These lactic acid bacteria showed probiotic potential, including resistance to gastrointestinal tract conditions, adhesion to Caco-2 cells, and aggregation. The low-salted squid fermented with Weissella strains had consistently higher antioxidant activity through changing their amino acid profiles. Therefore, W. cibaria FB-069 and W. viridescens FB-077 might be good candidates for fermentation of salted squid to develop functional food with enhanced health benefits.

Current Status and Prospects for Standards, Regulations, and Detection of Probiotic Yogurt: Review (프로바이오틱 요구르트의 기준, 규정, 검출에 관한 현황 및 전망: 총설)

  • Jung-Whan Chon;Kun-Ho Seo;Tae-Jin Kim;Hye-Young Youn;Seok-Hyeong Kang;Won-Uk Hwang;Hajeong Jeong;Dongkwan Jeong;Kwang-Young Song
    • Journal of Dairy Science and Biotechnology
    • /
    • v.41 no.1
    • /
    • pp.9-25
    • /
    • 2023
  • Yogurt fermentation is known to be beneficial because it provides a low pH and harsh environment for foodborne pathogens and improves organoleptic properties. Additionally, organic acids produced through fermentation have a good effect on the viscosity and gelling properties of yogurt. Several potential health benefits of probiotic and generally recognized as safe strains have been suggested. Yogurt is the preferred vehicle for delivering probiotics to health-conscious consumers. Therefore, manufacturers of probiotic beverages must comply with the relevant regulations. The development of probiotic yogurt begins with the selection of strains with safety and functional properties of probiotics. The selected probiotic strain should be technically suitable for viability and improve organoleptic quality while maintaining the number of bacteria above the standard value during processing and storage conditions. In addition, the efficacy of probiotic strains contained in yogurt should be investigated, confirmed, and approved according to well-designed clinical trials. Although various methods are used to detect probiotic strains, the recently widely used next generation sequencing method can be actively utilized. In the future, more research should be conducted with the latest methods to identify probiotic functions and accurately detect probiotic strains.

Evaluation of the Probiotic Potential of Bacillus polyfermenticus CJ6 Isolated from Meju, a Korean Soybean Fermentation Starter

  • Jung, Ji Hye;Lee, Myung Yul;Chang, Hae Choon
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1510-1517
    • /
    • 2012
  • To evaluate the probiotic potential of Bacillus polyfermenticus CJ6 isolated from meju, a Korean traditional soybean fermentation starter, its functionality and safety were investigated. B. polyfermenticus CJ6 was sensitive to all antibiotics listed by the European Food Safety Authority. The strain was also non-hemolytic, carried no emetic toxin or enterotoxin genes, and produced no enterotoxins. The resistance of B. polyfermenticus CJ6 vegetative cells and spores to simulated gastrointestinal conditions was high (60-100% survival rate). B. polyfermenticus CJ6 produced high amounts (0.36 g as a purified lyophilized form) of ${\gamma}$-polyglutamic acid (PGA). We speculate that the improved cell viability and the production of ${\gamma}$-PGA have a significant correlation. Adhesion of the strain to Caco-2 and HT-29 cells was weaker than that of the reference strain (Lb. rhamnosus GG), but it was comparable to or stronger than those of reported Bacillus spp. When B. polyfermenticus CJ6 spores were given orally to mice, the number of cells excreted in the feces was 4-fold higher than the original inocula. This suggests the inoculated spores propagated within the intestinal tract of the mice. This idea was confirmed by field emission scanning electron microscopy, which revealed directly that B. polyfermenticus CJ6 cells germinated and adhered within the gastrointestinal tract of mice. Taken together, these findings suggest that B. polyfermenticus CJ6 has probiotic potential for both human consumption and use in animal feeds.

Inhibitory Effects of Candidate Probiotic Bacteria on the Growth of Fish Pathogenic Bacteria, Streptococcus sp. (Candidate Probiotic Bacteria의 어류병원성 Streptococcus sp. 성장에 대한 억제 효과)

  • Lee, Minyeong;Kim, Eunheui
    • Journal of fish pathology
    • /
    • v.27 no.2
    • /
    • pp.107-114
    • /
    • 2014
  • For the treatments and protection of bacterial fish disease, many requirements are needed for aquatic probiotics so that they are effective in aquaculture animals but are also harmless to humans. In the present study, among 17 candidate probiotic bacteria (CPB) obtained from the edible part of the shellfish, Bacillus sp. CPB-St (CPB-St) were selected and in vitro evaluated for the possibility as a probiotic strain for the control of fish streptococcosis which frequently occurs in the olive flounder farms. CPB-St showed inhibitory effects on the growth of various fish pathogenic bacteria, Streptococcus sp., S. parauberis, S. iniae, Lactococcus garvieae and L. piscium by the double layer test ranging about 18~26 mm of clear zone. Inhibitory activity of CPB-St to Streptococcus sp. was observed 6 hours after and the growth of Streptococcus sp. was decreased to 8~55 folds in the co-culture of CPB-St with Streptococcus sp.. The safety of CPB-St to fish and survival of CPB-St in the intestine were assessed in the olive flounder, Paralichthys olivaceus. Fish mortality was not observed in artificial infection with CPB-St for 2 weeks. CPB-St was entirely excreted from the stomach and intestine 24 hours after oral injection. This results indicate that CPB-St has potential applications as a probiotic for the control of fish streptococcosis in aquaculture.

Safety Evaluation of Bifidobacterium breve IDCC4401 Isolated from Infant Feces for Use as a Commercial Probiotic

  • Choi, In Young;Kim, Jinhee;Kim, Su-Hyeon;Ban, O-Hyun;Yang, Jungwoo;Park, Mi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.7
    • /
    • pp.949-955
    • /
    • 2021
  • Previously, our research group isolated Bifidobacterium breve IDCC4401 from infant feces as a potential probiotic. For this study, we evaluated the safety of B. breve IDCC4401 using genomic and phenotypic analyses. Whole genome sequencing was performed to identify genomic characteristics and investigate the potential presence of genes encoding virulence, antibiotic resistance, and mobile genetic elements. Phenotypic analyses including antibiotic susceptibility, enzyme activity, production of biogenic amines (BAs), and proportion of D-/L-lactate were evaluated using E-test, API ZYM test, high-performance liquid chromatography (HPLC), and D-/L-lactic acid assay respectively. The genome of B. breve IDCC4401 consists of 2,426,499 bp with a GC content of 58.70% and 2,016 coding regions. Confirmation of the genome as B. breve was provided by its 98.93% similarity with B. breve DSM20213. Furthermore, B. breve IDCC4401 genes encoding virulence and antibiotic resistance were not identified. Although B. breve IDCC4401 showed antibiotic resistance against vancomycin, we confirmed that this was an intrinsic feature since the antibiotic resistance gene was not present. B. breve IDCC4401 showed leucine arylamidase, cystine arylamidase, α-galactosidase, β-galactosidase, and α-glucosidase activities, whereas it did not show production of harmful enzymes such as β-glucosidase and β-glucuronidase. In addition, B. breve IDCC4401 did not produce any tyramine, histamine, putrescine, cadaverine, or 2-phenethylamine, which are frequently detected BAs during fermentation. B. breve IDCC4401 produced 95.08% of L-lactate and 4.92% of D-lactate. Therefore, our findings demonstrate the safety of B. breve IDCC 4401 as a potential probiotic for use in the food industry.