• Title/Summary/Keyword: probiotic product

Search Result 58, Processing Time 0.02 seconds

Antioxidative and Probiotic Properties of Lactobacillus gasseri NLRI-312 Isolated from Korean Infant Feces

  • Kim, H.S.;Jeong, S.G.;Ham, J.S.;Chae, H.S.;Lee, J.M.;Ahn, C.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.9
    • /
    • pp.1335-1341
    • /
    • 2006
  • We selected a Lactobacillus spp. from Korean healthy infant feces based upon their antioxidant activity. This strain was identified as Lactobacillus gasseri by 16S rDNA sequencing, and named Lactobacillus gasseri NLRI-312. In the present study, we investigate the protective effect of this strain on the $H_2O_2$ induced damage to cellular membrane lipid and DNA in Jurkat cells. To estimate the extent of cellular lipid peroxidation inhibition, MDA (malondialdehyde) was measured, and DNA damage was tested by the comet assay. We also examined probiotic properties including tolerance to acid and bile, antibiotic resistance. From the results obtained, the supplementation of Jurkat cells with NLRI-312 decreased in DNA damage, while no effect was shown on MDA decrease. In probiotic properties, this strain was resistance to both acid and bile, showed considerably higher survival when incubated in pH 2 or 1% bile salts (w/v). We concluded that the NLRI-312 could be used as potential probiotic bacteria, with the effect of reducing DNA damage induced by $H_2O_2$.

Efficacy of the Probiotic Probiotical Confirmed in Acute Gastroenteritis

  • Kluijfhout, Sandra;Trieu, Thanh-Van;Vandenplas, Yvan
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.23 no.5
    • /
    • pp.464-471
    • /
    • 2020
  • Purpose: Some probiotic strains reduce the duration of acute diarrhea. Because of strain and product specificity, each product needs to be supported by clinical data. This study aimed to test the efficacy of the synbiotic food supplement Probiotical (Streptococcus thermophilus, Lactobacillus rhamnosus, Lactobacillus acidophilus, Bifidobacterium lactis, Bifidobacterium infantis, fructo-oligosaccharides) in children with acute gastroenteritis of likely infectious origin. The primary endpoint was the number of children with normal stool consistency during the treatment duration. Methods: A total of 46 children (aged 3.6 months to 12 years) with acute gastroenteritis that started less than 48 hours prior to their visit at a hospital-based emergency department were included in this prospective, randomized, placebo-controlled trial. All children were treated with oral rehydration solution and placebo (n=20) or the test product (n=26). Results: Significantly more children had a normal stool consistency on days 1 and 2 in the probiotic group: 5 children (20%) on day 1 in the probiotic group compared with none in the placebo group (p=0.046). On day 2, 11 children in the probiotic group (46%) and 3 (16%) in the placebo group (p=0.024) had a normal stool consistency. The mean duration of diarrhea was shorter in the probiotic group compared with that in the placebo group (3.04±1.36 vs. 4.20±1.34 days) (p=0.018). Conclusion: The test product was shown to normalize stool consistency significantly more rapidly than the placebo. These data confirm the findings from a previous study in a larger group of children performed in a primary healthcare setting.

Development and Verification of an Optimum Composition Model for a Synbiotic Fermented Milk Using Sequential Quadratic Programming Techniques

  • Chen, Ming-Ju;Chen, Kun-Nan;Lin, Chin-Wen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.10
    • /
    • pp.1490-1495
    • /
    • 2006
  • The purpose of this research was to develop an optimum composition model for a new synbiotic fermented dairy product with high probiotic cell counts, and to experimentally verify this model. The optimum composition model indicated the growth promoter ratio that could provide the highest growth rate for probiotics in this fermented product. Different levels of growth promoters were first blended with milk to improve the growth rates of probiotics, and the optimum composition model was determined. The probiotic viabilities and chemical properties were analyzed for the samples made using the optimal formula. The optimal combination of the growth promoters for the synbiotic fermented milk product was 1.12% peptides, 3% fructooligosaccharides (FOS), and 1.87% isomaltooligosaccharides (IMO). A product manufactured according to the formula of the optimum model was analyzed, showing that the model was effective in improving the viability of both Lactobacillus spp. and Bifidobacterium spp.

Overview of Dairy-based Products with Probiotics: Fermented or Non-fermented Milk Drink

  • Hye Ji Jang;Na-Kyoung Lee;Hyun-Dong Paik
    • Food Science of Animal Resources
    • /
    • v.44 no.2
    • /
    • pp.255-268
    • /
    • 2024
  • Probiotic products have long been recognized for their health benefits. Additionally, milk has held a longstanding reputation as a dairy product that offers high-quality proteins and essential micronutrients. As awareness of the impact of food on health grows, interest in functional products such as probiotic dairy products is on the rise. Fermentation, a time-honored technique used to enhance nutritional value and food preservation, has been used for centuries to increase nutritional value and is one of the oldest food processing methods. Historically, fermented dairy products have been used as convenient vehicle for the consumption of probiotics. However, addressing the potential drawbacks of fermentation has recently led to increase in research on probiotic dairy drinks prepared without fermentation. These non-fermented dairy drinks have the advantage of maintaining the original flavors of milk drinks, containing potential health functional probiotics, and being an alternative dairy product that is helpful for probiotics intake. Currently, research on plant-based dairy products is rapidly increasing in the market. These developments might suggest the potential for novel forms of non-fermented dairy beverages with substantial prospects in the food market. This review aims to provide an overview of milk-based dairy beverages, both fermented and non-fermented, and discuss the potential of non-fermented dairy products. This exploration paves the way for innovative approaches to deliver probiotics and nutrition to consumers.

Quality and Probiotic Lactic Acid Bacteria Diversity of Rabbit Meat Bekasam-Fermented Meat

  • Wulandari, Eka;Yurmiati, Husmy;Subroto, Toto;Suradi, Kusmajadi
    • Food Science of Animal Resources
    • /
    • v.40 no.3
    • /
    • pp.362-376
    • /
    • 2020
  • Rabbit meat bekasam is a traditional fermentation product from Indonesia. This study aimed to determine the chemical and microbiological characteristics of rabbit meat bekasam during the fermentation process in order to isolate, characterize (in vitro and in vivo), and identify lactic acid bacteria (LAB) as the probiotic candidate. The chemical contents of bekasam on 7-day fermentation were investigated in explorative and experimental methods in a completely randomized design. A proximate analysis reported a decrease in the moisture content, fat and carbohydrate content, and an increase in protein content. Also, lactic acid content was increased from 0.48% to 1.12%, and pH was decreased from 5.3 to 4.3. Other properties indicated different values, such as bacteria (2.75×106 to 4.45×107 CFU/g), total LAB (3.82×106 to 4.67×108 CFU/g), total yeast (9.89×106 to 3.82×108 CFU/g) and total mould (4.34×101 to 4.86×103 CFU/g). The experiment produced nine LAB isolates, including two probiotics subjected to further 16S rRNA gene analysis, which indicated that Lactobacillus buchneri was the potential probiotic isolate. After being tested on BALB/c mice, L. buchneri could improve the immune system by inhibiting the growth of Coliform and Salmonella.

Isolation and Characterization of a Protease-Producing Bacterium, Bacillus amyloliquefaciens P27 from Meju as a Probiotic Starter for Fermented Meat Products

  • Lee, Mi-Sun;Lee, Na-Kyoung;Chang, Kyung-Hoon;Choi, Shin-Yang;Song, Chi-Kwang;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.30 no.5
    • /
    • pp.804-810
    • /
    • 2010
  • This study was performed to select protease-producing Bacillus sp. as a potential probiotic starter for fermented meat products. In order to isolate protease-producing bacterium from meju, measured the diameter of the clear zone on agar plate (TSA, 1% (w/v) skim milk) and analyzed for intracellular protease activity, then 10 Bacillus-like strains were isolated. Three Bacillus-like strains (P19, P27, and P33) among 10 strains were able to tolerate in acidic condition (TSB, pH 2.5, 2 h incubation). These 3 strains were showed antimicrobial activity against food-borne pathogenic bacteria. These vegetative cells of 3 strains were showed a survival rate of 0.04% to 0.08% under the artificial gastric acidic condition (TSB, pH 2.5 with 1% (w/v) pepsin), but spore-forming cells were 56.29% to 84.77%. Vegetative cells of 3 strains were the least bile-resistant, while spore-forming cells of 3 strains showed higher survival rate more than 76% under artificial bile condition (TSB, 0.1% (w/v) oxgall bile). In these strains, P27 strain was finally selected as a good probiotic strain. P27 strain was tentatively identified as Bacillus amyloliquefaciens by API CHB kit and 16S rDNA sequence analysis. The results of this study suggest that B. amyloliquefaciens P27 can be used as a potential probiotic starter for fermented meat product.

Rapid Identification of Lactobacillus and Bifidobacterium in Probiotic Products Using Multiplex PCR

  • Sul, Su-Yeon;Kim, Hyun-Joong;Kim, Tae-Woon;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.490-495
    • /
    • 2007
  • Lactic acid bacteria (LAB) are beneficial for the gastrointestinal tract and reinforce immunity in human health. Recently, many functional products using the lactic acid bacteria have been developed. Among these LAB, Lactobacillus acidophilus, Lactobacillus rhamnosus, Bifidobacterium longum, and Bifidobacterium bifidum are frequently used for probiotic products. In order to monitor these LAB in commercial probiotic products, a multiplex PCR method was developed. We designed four species-specific primer pairs for multiplex PCR from the 16S rRNA, 16S-23S rRNA intergenic spacer region, and 23S rRNA genes in Lactobacillus acidophilus, Lactobacillus rhamnosus, Bifidobacterium longum, and Bifidobacterium bifidum. Using these primer pairs, 4 different LAB were detected with high specificity in functional foods. We suggest that the multiplex PCR method developed in this study would be an efficient tool for simple, rapid, and reliable identification of LAB used as probiotic strains.

Development of Probiotic Candies with Optimal Viability by Using Response Surface Methodology and Sequential Quadratic Programming

  • Chen, Kun-Nan;Chen, Ming-Ju;Shiu, Jia-Shian
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.6
    • /
    • pp.896-902
    • /
    • 2008
  • The objective of this research was to create a new probiotic candy with good flavor and healthy benefits by using the response surface method and a sequential quadratic programming technique. The endpoint was to increase the varieties of dairy products and enhance their market values. In this study, milk was mixed with yogurt cultures (Lactobacillus bulgaricus, Streptococcus thermophilus) and probiotics (L. paracasei, Bifidobacterium longum) and incubated at $37^{\circ}C$ for 20 h. The samples were blended with lyoprotectants (galactose, skim milk powder and sucrose), freeze dried and then mixed with sweeteners (lactose and xylitol) to improve the texture for forming tablets. The processing conditions were optimized in two steps: the first step constructed a surface model using response surface methodology; the second step optimized the model with a sequential quadratic programming procedure. Results indicated that skim milk inoculated with L. delbrueckii subsp. Bulgaricus, S. thermophilus, L. paracasei subsp. paracasei and B. longum and blended with 6.9% of galactose, 7.0% of sucrose and 8.0% of skim milk powder would produce a new probiotic candy with the highest viability of probiotics and good flavor. A relatively higher survival of probiotics can be achieved by placing the probiotic candy product in a glass bottle with deoxidant and desiccant at $4^{\circ}C$. These probiotic counts remained at 106-108 CFU/g after being stored for two months.

Effect of Lactobacillus acidophilus based probiotic product supplementation on the blood profile, fecal noxious gas emission, and fecal shedding of lactic acid bacteria and coliform bacteria in healthy adult Beagle dogs

  • Sun, Hao Yang;Kim, In Ho
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.437-443
    • /
    • 2020
  • The aim of this study was to evaluate the effect of Lactobacillus acidophilus probiotic (LAP) product supplementation on the blood profile, fecal noxious gas emission, and fecal shedding of lactic acid bacteria and coliform bacteria in healthy adult Beagle dogs. In total, 14 Beagle dogs with an average initial body weight of 10.19 ± 0.61 kg were randomly assigned into two dietary treatments,with and without LAP supplementation, for a 28-day feeding trial. At the end of the experiment, there was no significant (p > 0.05) difference in the concentration of serum total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), white blood cell (WBC), red blood cell (RBC), blood lymphocyte percentage, fecal hydrogen sulfide (H2S) and total mercaptans (R.SH) emission, and fecal coliforms counts. However, the serum concentrations of the triglyceride and fecal ammonia (NH3) emission of the LAP treatment were significantly (p < 0.05) decreased in the group compared with the CON dogs. Fecal total lactic acid bacteria counts were significantly (p < 0.05) increased in the LAP treatment. In conclusion, the supplementation of LAP in Beagle dog diets could decrease the blood triglyceride level and enhance the gut Lactobacillus count which may have positive effects on dogs.

A Case Study on the Brand Development of Odor-reducing Feed Additives

  • Gok Mi Kim
    • International journal of advanced smart convergence
    • /
    • v.13 no.1
    • /
    • pp.194-200
    • /
    • 2024
  • In the past, antibiotics and antimicrobial substances have been used for the purpose of promoting the growth of livestock or treating livestock, but various problems such as the presence of livestock products or resistant bacteria have emerged. Recently, regulations on the use of antibiotics have been strengthened worldwide, and probiotics are attracting attention as an alternative. Probiotic microorganisms have already been used for human use, such as intestinal abnormal fermentation, diarrhea, and indigestion. In livestock, beneficial microorganisms are increasing in use for the purpose of improving productivity, such as promoting livestock development and preventing diarrhea. Therefore, it is advisable to understand livestock probiotics in deeper and think about effective uses. The role of probiotics in the livestock sector is made with microorganisms themselves, so it is a substance that promotes livestock growth and improves feed efficiency by settling in the intestines of livestock, suppressing the growth of other harmful microorganisms, helping digestion and absorption of ingested feed, and helping to synthesize other nutrients. There is a need for a probiotic that suppresses intestinal bacteria by supplying probiotics used as a means to minimize the effects of stress in livestock management, thereby suppressing disease outbreaks by maintaining beneficial microorganisms and suppressing pathogenic microorganisms. The purpose of this paper is to develop a brand of feed additive probiotics to improve health conditions due to increased feed intake, improve the efficiency of use of feed nutrients, inhibit the decomposition and production of toxic substances, increase immunity, reduce odor in livestock, and improve the environment. We investigated and analyzed feed additive probiotics already on the market, and developed the naming and logo of suitable feed additive probiotic brands in livestock. We hoped that the newly developed product will be used in the field and help solve problems in the livestock field.