• Title/Summary/Keyword: probiotic culture

Search Result 166, Processing Time 0.021 seconds

Antibacterial Effects of Pseudomonas aeruginosa MB I-3 against Listonella anguillarum (어류 병원세균, Listonella anguillarum에 대한 Pseudomonas aeruginosa MB I-3의 항균 효과)

  • Lee, Su-Jung;Youn, I Na;Kim, Jin-Do;Lee, Jung Sick;Kim, Eunheui
    • Journal of fish pathology
    • /
    • v.27 no.1
    • /
    • pp.17-24
    • /
    • 2014
  • To study the possible use of probiotics in fish farming, The in vitro and in vivo antibacterial effects of Pseudomonas aeruginosa MB I-3 (MB I-3) against the fish pathogenic bacterium Listonella anguillarum were evaluated. The inhibitory effects of MB I-3 against vibrios were investigated by the double layer method and the co-culture. The results showed that MB I-3 inhibited the growth of pathogenic vibrios including Listonella anguillarum, Vibrio alginolyticus, Vibrio cholerae, Vibrio fluvialis, Vibrio furnissii, Vibrio harveyi, Vibrio parahaemolyticus and Vibrio vulnificus. Extracellular substances obtained from the cultural supernatant of MB I-3 by ethyl acetate extraction showed inhibitory effects on L. anguillarum. The antibacterial substance of MB I-3 was evaluated to destroy the cell membrane of L. anguillarum in electron micrographs. The probiotic effects of MB I-3 was tested by exposing olive flounder (Paralichthys olivaceus) fry to L. anguillarum with or without MB I-3. The cumulative mortality of olive flounder fry infected with L. anguillarum was 24% in the group with MB I-3, while it was 46% in the control group without MB I-3. These results indicate that MB I-3 has potential applications as a probiotic for the control of fish pathogenic vibrios in fish rearing system.

Effect of Feeding Aspergillus Oryzae Culture on Fecal Microflora, Egg Qualities, and Nutrient Metabolizabilities in Laying Hens

  • Han, S.W.;Lee, K.W.;Lee, B.D.;Sung, C.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.3
    • /
    • pp.417-421
    • /
    • 1999
  • This experiment examined the effects of feeding Aspergillus oryzae (AO) culture to laying hens, on fecal microbial populations, fecal pH and moisture content, egg quality, and metabolizabilities of several nutrients. Sixteen commercial 38-wk-old laying hens were randomly allotted to four diets: control; with 0.15% locally produced AO culture; with 0.3% locally produced AO culture, and; or with 0.3% imported AO. Each treatment consisted of four replicates (cages) containing one bird per cage according to a completely randomized design. After 4 wk, AO were recovered in the feces of birds fed the AO diets, indicating that AO might pass through the fore-gut alive and become active in the hind gut. The number of Lactobacillus spp. in feces was higher in all treated groups than that of the control, indicating that AO would provide a beneficial environment for the Lactobacillus spp. to proliferate in the intestine. The number of fecal E. coli was significantly reduced by the addition of AO. A similar trend was also found for aerobic bacteria. Although not significant, fecal moisture contents tended to be reduced by the addition of AO. Fecal pH was not significantly different among the treatments. The addition of AO did not affect the various economic traits of eggs. Metabolizabilities of gross energy and dry matter measured during the 5th wk were increased by the AO supplementation. It appears that AO culture alone could be used as a probiotic supplement for layers.

Evaluation of Fermented Sausages Manufactured with Reduced-fat and Functional Starter Cultures on Physicochemical, Functional and Flavor Characteristics

  • Kim, Young Joo;Park, Sung Yong;Lee, Hong Cheol;Yoo, Seung Seok;Oh, Se Jong;Kim, Hyeong Sang;Chin, Koo Bok
    • Food Science of Animal Resources
    • /
    • v.34 no.3
    • /
    • pp.346-354
    • /
    • 2014
  • Fermented foods with probiotics having functional properties may provide beneficial effects on health. These effects are varied, depending on the type of lactic acid bacteria (LAB). Different probiotic LAB might have different functional properties. Thus, this study was performed to evaluate the quality of fermented sausages manufactured with functional starter cultures (Lactobacillus plantarum 115 and 167, and Pediococcus damnosus L12) and different fat levels, and to determine the optimum condition for the manufacture of these products. Medium-fat (~15%) fermented sausages reduced the drying time and cholesterol contents, as compared to regular-fat counterparts. In proximate analysis, the contents of moisture and protein of regular-fat products were lower than medium-fat with reduced fat content. The regular-fat products also had a lighter color and less redness, due to reduced fat content. Approximately 35 volatile compounds were identified in functional fermented sausages, and hexanal, trans-caryophyllene, and tetradecanal were the major volatile compounds. Selected mixed starter culture showed the potential possibility of replacing the commercial starter culture (LK30 plus) in flavor profiles. However, medium-fat fermented sausage containing selected mixed starter culture tended to be less acceptable than their high-fat counterparts, due to excess dry ring developed in the surface. These results indicate that the use of combinations of L. plantarum 115 and 167, and P. damnosus L12 as a starter culture, will prove useful for manufacturing the fermented sausage.

Statistical Optimization of Culture Conditions of Probiotic Lactobacillus brevis SBB07 for Enhanced Cell Growth (프로바이오틱 Lactobacillus brevis SBB07의 균체량 증가를 위한 배양 조건 최적화)

  • Jeong, Su-Ji;Yang, Hee-Jong;Ryu, Myeong Seon;Seo, Ji Won;Jeong, Seong-Yeop;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.28 no.5
    • /
    • pp.577-586
    • /
    • 2018
  • We recently reported the potential probiotic properties of Lactobacillus brevis SBB07 isolated from blueberries. The present study investigates the effect of culture conditions such as temperature, initial pH, culture time, and medium constituent for industrial application. The ingredients of the medium to improve cell growth were selected by Plackett-Burman design (PBD) and central composite design (CCD) within a desirable range. The PBD was applied with 19 factors: seven carbon sources, six nitrogen sources, and six microelements. Protease peptone, corn steep powder (CSP), and yeast extract were found to be significant factors for the growth of SBB07. The CCD was then applied with three variables found from the PBD at five levels, and the optimum values were decided for the three variables: protease peptone, CSP, and yeast extract. In the case of the growth of SBB07, the proposed optimal media contained 2.0% protease peptone, 2.5% CSP, and 2.0% yeast extract, and the maximum dried-cell weight was predicted to be 2.93963 g/l. By the model verification, it was confirmed that the predicted and actual results are similar. Finally, the study investigated the effects of incubation temperature and initial pH at the optimized medium. It was confirmed that the dried-cell weight increased from $2.2933{\pm}0.0601g/l$ to $3.85{\pm}0.0265g/l$ when compared to the basal medium at $37^{\circ}C$ and initial pH 8.0. Establishing the optimal culture condition for SBB07 provides good potential for applications in probiotics and can serve as the foundation for the industrialization of materials.

Antimicrobial Substance of Lactobacillus johnsonii PF01 (락토바실러스 존소니 PF01 균주 유래 항균 활성)

  • Kim, Sang Hoon;Park, Hye Kyun;Hwang, In-Chan;Kang, Dae-Kyung
    • Journal of Dairy Science and Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.53-57
    • /
    • 2020
  • Culture concentrate of probiotic Lactobacillus johnsonii PF01 inhibited the growth of Staphylococcus aureus, which was confirmed by agar well diffusion method. Protease treatment of PF01 culture concentrate indicated that the antimicrobial substance of PF01 was a bacteriocin. Investigation of PF01 genome revealed the existence of a gene similar to that of helveticin, which showed 34.9% and 41.0% identity with those of L. helveticus 481 and L. crispatus K313, respectively, thereby suggesting that the bacteriocin produced by strain PF01 is a helveticin homolog.

Kimchi and Its Functionality (김치와 김치의 건강기능성)

  • Park, Kun-Young;Hong, Geun-Hye
    • Journal of the Korean Society of Food Culture
    • /
    • v.34 no.2
    • /
    • pp.142-158
    • /
    • 2019
  • Kimchi is a traditional Korean fermented vegetable probiotic food. The use of high quality ingredients and predominant LAB (lactic acid bacteria)-whether it be ambient bacteria or adding starters, low temperature and facultative anaerobic condition for the fermentation are important factors for preparing kimchi with better taste and functionality. The predominated LAB genera are Leuconostoc, Lactobacillus, and Weissella in kimchi fermentation. The representative species are Leu. mesenteroides, Leu. citrium, Lab. plantarum, Lab. sakei, and Wei. koreensis. Kimchi, especially the optimally fermented kimchi, has various health benefits, including control of colon health, antioxidation, antiaging effects, cancer preventive effect, antiobesity, control of dyslipidemic and metabolic syndrome, etc.; due to the presence of LAB, various nutraceuticals, and metabolites from the ingredients and LAB. The kimchi LAB are good probiotics, exhibiting antimicrobial activity, antioxidant, antimutagenic and anticancer effects, as well as immunomodualatory effect, antiobesity, and cholesterol and lipid lowering effects. Thus, kimchi ingredients, LAB, fermentation methods, and metabolites are important factors that modulate various functionalities. In this review, we introduced recent information showing kimchi and its health benefits in Korean Functional Foods (Park & Ju 2018).

Effects of Lactobacillus reuteri MG5346 on Receptor Activator of Nuclear Factor-Kappa B Ligand (RANKL)-Induced Osteoclastogenesis and Ligature-Induced Experimental Periodontitis Rats

  • Yu-Jin Jeong;Jae-In Jung;YongGyeong Kim;Chang-Ho Kang;Jee-Young Imm
    • Food Science of Animal Resources
    • /
    • v.43 no.1
    • /
    • pp.157-169
    • /
    • 2023
  • Effects of culture supernatants of Lactobacillus reuteri MG5346 (CS-MG5346) on receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis were examined. CS-MG5346 treatment up to 400 ㎍/mL significantly reduced tartrate-resistant acid-phosphatase (TRAP) activity, the phenotype biomarker of osteoclast, without affecting cell viability. CS-MG5346 inhibited the expression of osteoclast specific transcriptional factors (c-fos and nuclear factor-activated T cells c1) and their target genes (TRAP, cathepsin, and matrix metallo-proteinase-9) in a dose-dependent manner (p<0.05). The administration of L. reuteri MG5346 (2×108 CFU/day) for 8 wks significantly improved furcation involvement, but no difference was observed in alveolar bone loss in ligature-induced experimental periodontitis rats. The elevated RANKL/osteoprotegerin ratio, the biomarker of periodontitis, was significantly lowered in the gingival tissue by administration of L. reuteri MG5346 (p<0.05). L. reuteri MG5346 showed excellent stability in simulated stomach and intestinal fluids and did not have antibiotic resistance. Based on the results, L. reuteri MG5346 has the potential to be a promising probiotic strain for oral health.

Isolation and Identification of Lactic Bacteria Containing Superior Activity of the Bile Salts Deconjugation (담즙산 분해능이 뛰어난 젖산균의 분리 및 동정)

  • 하철규;조진국;채영규;허강칠
    • Food Science of Animal Resources
    • /
    • v.24 no.2
    • /
    • pp.164-170
    • /
    • 2004
  • The purpose of this study is to isolate probiotic lactic acid bacteria (LAB) that produced bile salts hydrolase. One hundred twenty strains were initially isolated from human feces. Based on their resistance of acid, tolerances of bile salts, and inhibitory activity against Escherichia coli, five strains were selected. A strain producing highest activity of bile salts hydrolase was identified as Lactoacillus plantarum using API carbohydrate fermentation pattern and 16S rRNA sequences, and named CK102. Lactobacillus plantarum CK102 survived at a level of 1.36${\times}$10$\^$8/ CFU/$m\ell$ in pH 2 buffer for 6 h and showed exhibited excellent bile tolerance. When L plantarum CK102 was cultured with E. coli in MRS broth, no viable cells of E. coli was detected after 18 h fermentation. These results suggest that Lactobacillus plantarum CK 102 may be commercially used for the probiotic culture.

Pathogenicity and Single Dose Toxicity of a Potential Probiotic Lactobacillus spp. PSC101 in Mice

  • Hwang, Mi-Hyun;Kim, Young-Hwon;Kim, Eun-Young;Song, Jae-Chan;Lee, Keun-Woo;Jeong, Kyu-Shik;Kim, Kil-Soo;Rhee, Man-hee;Kwon, Oh-Deok
    • Toxicological Research
    • /
    • v.20 no.2
    • /
    • pp.173-177
    • /
    • 2004
  • This study was conducted to investigate the pathogenicity and acute single toxicity of Lactobacillus spp. PSC101 (PSC101) isolated from pigs and L. acidophilus (LA) at 2.5$\times$$10^9$CFU or 2.5$\times$$10^{12}$colony forming units (CFU) in mice for 14 days. After oral administration of the bacteria into mice, we could not find their any specific pathogenicity from the standpoints of clinical signs, and changes in body weight and body temperature, as compared with the control group during 14 days. We further investigated the toxicity of concentrated culture broth ($\times$10) after fermentation of them for safe industrial process. As the results, we could not find any clinical signs, changes in body weight and body temperature, as compared with the control group (MRS broth) for 14 days. The results obtained in this study suggest that the potentially probiotic, PSC101, is non-toxic in mice and is therefore likely to be safe for pig use.

Probiotic Characteristics of Lactobacillus acidophilus KY1909 Isolated from Korean Breast-Fed Infant (한국인 유아 분변에서 분리한 Lactobacillus acidophilus KY1909의 프로바이오틱 특성)

  • Park, Jong-Gil;Yun, Suk-Young;Oh, Se-Jong;Shin, Jung-Gul;Baek, Young-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.1244-1247
    • /
    • 2003
  • The purpose of this study was to isolate lactic acid bacteria that produced L(+) lactic acid from infant feces. Thirteen colonies were isolated with a MRS-plate containing 0.5% $CaCO_3$ to determine their ability to produce lactic acid. Based on their lactic acid production, 10 strains of Lactobacillus were identified to assess the ratio of lactate isomer using HPLC. A strain producing L-lactic acid was identified as Lactobacillus acidophilus, using API carbohydrate fermentation patterns and physiological tests, and named KY1909. The strain exhibited good acid tolerance in an artificial gastric juice as well as high bile resistance in MRS containing 0.5% bile acids. L. acidophilus KY1909 produced D(-) and L(+) lactic acid at a ratio of 6 : 94; whereas commercial strains of Lactobacillus acidophilus produced D(-) and L(+) lactic acid at a ratio of 1 : 1. These results demonstrate the L. acidophilus KY1909 can be utilized in fermented milk products and dietary supplements as a probiotic culture.