• 제목/요약/키워드: probiotic bacteria

검색결과 420건 처리시간 0.034초

Screening of Immunostimulatory Probiotic Lactic Acid Bacteria from Chicken Feces as Animal Probiotics

  • Lee, Eun-Kyung;Lee, Na-Kyoung;Lee, Si-Kyung;Chang, Hyo-Ihl;Paik, Hyun-Dong
    • 한국축산식품학회지
    • /
    • 제30권4호
    • /
    • pp.634-640
    • /
    • 2010
  • The principal objective of this study was to screen and select acid-tolerant Lactobacillus strains from chicken feces, feeds, and other sources. Fourty six strains evidencing acid tolerance (pH 3.5) were isolated in this study. Among them, nine strains exhibited marked immunostimulatory effects. Therefore, nine candidate strains were characterized for probiotic use. In order to evaluate macrophage activation, NO production was measured using RAW 264.7 cells. In particular, three strains (FC812, FC222, and FC113) evidenced the highest levels of NO production measured at $38.39{\pm}20.01,\;35.06{\pm}27.73$, and $33.88{\pm}15.99{\mu}M$, respectively, at a concentration of $10^{8}CFU/mL$. The majority of strains, with the exception of strain FC322, evidenced marked resistance to artificial gastric juice (pH 2.5 with 1%(w/v) pepsin). Additionally, strains FC222, FC421, FC511, and FC721 were highly resistant to artificial bile acid (0.1%(w/v) oxgall), whereas strains FC113, FC322, FC422, FC621, and FC812 were the least resistant to bile. All nine strains exerted antimicrobial effects against chickenrelated pathogens. Additionally, all nine strains were found to be resistant to several antibiotics. The isolated strains, except for strain FC322, were tentatively identified as Lactobacillus salivarius, using an API 50 CHL kit. These results demonstrate that some probiotic organisms may potentially probiotic properties, and thus may serve as an effective alternative to antibiotics in animal applications.

Effect of Silk Fibroin Biomaterial Coating on Cell Viability and Intestinal Adhesion of Probiotic Bacteria

  • Kwon, Gicheol;Heo, Bohye;Kwon, Mi Jin;Kim, Insu;Chu, Jaeryang;Kim, Byung-Yong;Kim, Byoung-Kook;Park, Sung Sun
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권4호
    • /
    • pp.592-600
    • /
    • 2021
  • Probiotics can be processed into a powder, tablet, or capsule form for easy intake. They are exposed to frequent stresses not only during complex processing steps, but also in the human body after intake. For this reason, various coating agents that promote probiotic bacterial stability in the intestinal environment have been developed. Silk fibroin (SF) is a material used in a variety of fields from drug delivery systems to enzyme immobilization and has potential as a coating agent for probiotics. In this study, we investigated this potential by coating probiotic strains with 0.1% or 1% water-soluble calcium (WSC), 1% SF, and 10% trehalose. Under simulated gastrointestinal conditions, cell viability, cell surface hydrophobicity, and cell adhesion to intestinal epithelial cells were then measured. The survival ratio after freeze-drying was highest upon addition of 0.1% WSC. The probiotic bacteria coated with SF showed improved survival by more than 10.0% under simulated gastric conditions and 4.8% under simulated intestinal conditions. Moreover, the cell adhesion to intestinal epithelial cells was elevated by 1.0-36.0%. Our results indicate that SF has positive effects on enhancing the survival and adhesion capacity of bacterial strains under environmental stresses, thus demonstrating its potential as a suitable coating agent to stabilize probiotics throughout processing, packaging, storage and consumption.

Isolation, Characterization, and Comparative Genomics of the Novel Potential Probiotics from Canine Feces

  • Ngamlak Foongsawat;Sirinthorn Sunthornthummas;Kwannan Nantavisai;Komwit Surachat;Achariya Rangsiruji;Siriruk Sarawaneeyaruk;Kedvadee Insian;Sirapan Sukontasing;Nuttika Suwannasai;Onanong Pringsulaka
    • 한국축산식품학회지
    • /
    • 제43권4호
    • /
    • pp.685-702
    • /
    • 2023
  • Lactic acid bacteria (LAB) are commonly used as probiotics; however, not all LAB strains have the same beneficial effects. To successfully use LAB as probiotics in canines, LAB species should originate from the canine intestinal tract as they display host specificity. The objective of this study was to investigate the phenotypic and genomic traits of potential probiotic LAB isolated from canine fecal samples. Twenty LAB samples were evaluated for their potential probiotic characteristics including resistance to low pH, bile salts, hydrophobicity, auto-aggregation, co-aggregation, adhesion to epithelia or mucosa, and production of inhibitory compounds. Additionally, we evaluated their safety and other beneficial effects on canine health, such as DPPH free radical scavenging, and β-galactosidase. Four strains demonstrated potential probiotic characteristics and were selected: Enterococcus hirae Pom4, Limosilactobacillus fermentum Pom5, Pediococcus pentosaceus Chi8, and Ligilactobacillus animalis FB2. Safety evaluations showed that all strains lacked hemolytic activity, could not produce biogenic amines, and did not carry any pathogenic genes. In addition, L. fermentum Pom5 and P. pentosaceus Chi8 displayed susceptibility to all antibiotics and concordant with the absence of antibiotic resistance genes. Based on their phenotypic and genomic characteristics, L. fermentum Pom5 and P. pentosaceus Chi8 were identified as potential probiotic candidates for canines.

Characterization of Cholesterol Lowering Lactic Acid Bacteria Isolated from Palm Wine and Maize Beer and Assessment of Their Use in the Production of Probiotic Papaya Juice

  • Bertrand Tatsinkou Fossi;Dickson Ebwelle Ekabe;Liliane Laure Toukam Tatsinkou;Rene Bilingwe Ayiseh;Frederic Tavea;Pierre Michel Jazet
    • 한국미생물·생명공학회지
    • /
    • 제51권2호
    • /
    • pp.191-202
    • /
    • 2023
  • Elevated serum cholesterol is a main risk factor for heart disorders. Most probiotic products administered to lower cholesterol are dairy products which are not suitable for lactose-intolerant individuals. In this study, we assessed the cholesterol-lowering efficacy of LAB isolated from traditionally fermented drinks in diet-induced rats and determine their efficacy in the production of non-dairy, probiotic formulations using papaya juice. LAB were isolated from palm wine and corn beer on MRS agar using a pour-plate technique. Identification was carried out using 16S rRNA gene sequencing. A hypercholesterolemia model in which diet-induced Wistar albino rats were assigned into four groups was established. Oral gavage was carried out for 30 days. On the 31st day, the rats were dissected and the serum lipid profile was analyzed using biochemical kits. A 106 cfu/ml of a 24-h-old culture of selected lactobacilli was used to inoculate papaya juice and incubated at 37℃. Microbial and chemical changes were assessed during papaya fermentation and after four weeks of cold storage. Two selected isolates (Pw1 and Cb4) had in vitro cholesterol reduction of > 80%. These two isolates lowered lipid profile (triglyceride, total cholesterol, LDL-c) significantly, and increased HDL-c levels (p < 0.5) in the rat sera. Phylogenetic analysis showed that Pw1 was 98.86% similar to Limosilactobacillus fermentum, while Cb4 was 99.54% similar to Enteroccocus faecium. Both strains fermented papaya juice with cell viability reaching 8.92 × 108 cfu/ml and 25.3 × 108 cfu/ml respectively, and were still viable after 4 weeks of cold storage.

Characterization of L-(+)-Lactic Acid Producing Weizmannia coagulans Strains from Tree Barks and Probiogenomic Evaluation of BKMTCR2-2

  • Jenjuiree Mahittikon;Sitanan Thitiprasert;Sitanan Thitiprasert;Naoto Tanaka;Yuh Shiwa;Nitcha Chamroensaksri;Somboon Tanasupawat
    • 한국미생물·생명공학회지
    • /
    • 제51권4호
    • /
    • pp.403-415
    • /
    • 2023
  • This study aimed to isolate and identify L-(+)-lactic acid-producing bacteria from tree barks collected in Thailand and evaluate the potential strain as probiotics. Twelve strains were isolated and characterized phenotypically and genotypically. The strains exhibited a rod-shaped morphology, high-temperature tolerance, and the ability to ferment different sugars into lactic acid. Based on 16S rRNA gene analysis, all strains were identified as belonging to Weizmannia coagulans. Among the isolated strains, BKMTCR2-2 demonstrated exceptional lactic acid production, with 96.41% optical purity, 2.33 g/l of lactic acid production, 1.44 g/g of lactic acid yield (per gram of glucose consumption), and 0.0049 g/l/h of lactic acid productivity. This strain also displayed a wide range of pH tolerance, suggesting suitability for the human gastrointestinal tract and potential probiotic applications. The whole-genome sequence of BKMTCR2-2 was assembled using a hybridization approach that combined long and short reads. The genomic analysis confirmed its identification as W. coagulans and safety assessments revealed its non-pathogenic attribute compared to type strains and commercial probiotic strains. Furthermore, this strain exhibited resilience to acidic and bile conditions, along with the presence of potential probiotic-related genes and metabolic capabilities. These findings suggest that BKMTCR2-2 holds promise as a safe and effective probiotic strain with significant lactic acid production capabilities.

A Case Study on the Brand Development of Odor-reducing Feed Additives

  • Gok Mi Kim
    • International journal of advanced smart convergence
    • /
    • 제13권1호
    • /
    • pp.194-200
    • /
    • 2024
  • In the past, antibiotics and antimicrobial substances have been used for the purpose of promoting the growth of livestock or treating livestock, but various problems such as the presence of livestock products or resistant bacteria have emerged. Recently, regulations on the use of antibiotics have been strengthened worldwide, and probiotics are attracting attention as an alternative. Probiotic microorganisms have already been used for human use, such as intestinal abnormal fermentation, diarrhea, and indigestion. In livestock, beneficial microorganisms are increasing in use for the purpose of improving productivity, such as promoting livestock development and preventing diarrhea. Therefore, it is advisable to understand livestock probiotics in deeper and think about effective uses. The role of probiotics in the livestock sector is made with microorganisms themselves, so it is a substance that promotes livestock growth and improves feed efficiency by settling in the intestines of livestock, suppressing the growth of other harmful microorganisms, helping digestion and absorption of ingested feed, and helping to synthesize other nutrients. There is a need for a probiotic that suppresses intestinal bacteria by supplying probiotics used as a means to minimize the effects of stress in livestock management, thereby suppressing disease outbreaks by maintaining beneficial microorganisms and suppressing pathogenic microorganisms. The purpose of this paper is to develop a brand of feed additive probiotics to improve health conditions due to increased feed intake, improve the efficiency of use of feed nutrients, inhibit the decomposition and production of toxic substances, increase immunity, reduce odor in livestock, and improve the environment. We investigated and analyzed feed additive probiotics already on the market, and developed the naming and logo of suitable feed additive probiotic brands in livestock. We hoped that the newly developed product will be used in the field and help solve problems in the livestock field.

Characterization of Lactobacillus fermentum PL9988 Isolated from Healthy Elderly Korean in a Longevity Village

  • Park, Jong-Su;Shin, Eunju;Hong, Hyunjin;Shin, Hyun-Jung;Cho, Young-Hoon;Ahn, Ki-Hyun;Paek, Kyungsoo;Lee, Yeonhee
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권9호
    • /
    • pp.1510-1518
    • /
    • 2015
  • In this work, we wanted to develop a probiotic from famous longevity villages in Korea. We visited eight longevity villages in Korea to collect fecal samples from healthy adults who were aged above 80 years and had regular bowel movements, and isolated lactic-acid-producing bacteria from the samples. Isolated colonies that appeared on MRS agar containing bromophenol blue were identified by means of 16S rRNA sequencing, and 102 of the isolates were identified as lactic-acid-producing bacteria (18 species). Lactobacillus fermentum was the most frequently found species. Eight isolates were selected on the basis of their ability to inhibit the growth of six intestinal pathogens (Escherichia coli O157:H7, Salmonella enterica subsp. enterica Typhimurium, Salmonella enterica subsp. enterica Enteritidis, Enterococcus faecalis, Staphylococcus aureus, and Listeria monocytogenes) and their susceptibility to 15 antimicrobial agents. Among these eight isolates, four Lactobacillus fermentum isolates were found not to produce any harmful enzymes or metabolites. Among them, Lactobacillus fermentum isolate no. 24 showed the strongest binding to intestinal epithelial cells, the highest immune-enhancing activity, anti-inflammation activity, and anti-oxidation activity as well as the highest survival rates in the presence of artificial gastric juice and bile solution. This isolate, designated Lactobacillus fermentum PL9988, has all the characteristics for a good probiotic.

Probiotic 유산균 발효에 의한 다시마(Saccharina japonica) 추출액의 항산화 활성 (Antioxidant Activity of Kelp Saccharina japonica Extract Fermented by Probiotic Lactic Acid Bacteria)

  • 류대규;박슬기;강민균;정민철;조두민;장유미;정희진;이도하;김영목
    • 한국수산과학회지
    • /
    • 제53권3호
    • /
    • pp.361-367
    • /
    • 2020
  • The objective of this study was to investigate the effect of lactic acid bacteria (LAB) fermentation on the antioxidant activity of kelp Saccharina japonica water extract. Three LAB strains that had exhibited superior antioxidant activity in a previous study were selected for the kelp fermentation starter. The antioxidant activity of the fermented extracts was analyzed during fermentation. After 48 h of fermentation, the extract-fermented Lactobacillus plantarum D-11 strains showed the highest antioxidant activity in terms of DPPH (2,2-diphenyl-2-picryl hydrazyl) radical scavenging, ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] radical scavenging, oxygen radical absorbance capacity (ORAC) and fluorescence recovery after photobleaching (FRAP) assay. Furthermore, the analysis of total phenolic and flavonoid contents revealed that the enhanced antioxidant activity was mainly due to the increased antioxidant content from fermentation. Thus, this study suggests that probiotic LAB fermentation is an attractive approach for the development of various kelp fermentation products.