• 제목/요약/키워드: probability reasoning

검색결과 60건 처리시간 0.024초

철근 사출 궤적 추적을 위한 시작지점 검출 방법 (Start Point Detection Method for Tracing the Injection Path of Steel Rebars)

  • 이준목;강대성
    • 한국정보기술학회논문지
    • /
    • 제17권6호
    • /
    • pp.9-16
    • /
    • 2019
  • 최근 제조 공정을 개선하려는 기업들은 스마트 팩토리를 도입, 이에 따른 도약이 특별히 눈에 띈다. 이는 최소한의 수동 제어를 통해 완벽하게 생산시설의 프로세스를 수행하는 스마트 팩토리의 영역을 최대화하고 추론의 오차를 최소화 하는 것이 최종 목적이다. 본 연구는 무인 생산, 관리, 포장, 배송 관리를 위한 프로젝트의 일부로써 무인생산의 자동화 설비의 철근 추적을 통해 롤러의 자동 교정을 수행하기 위해 철근 추적 시작점 검출에 대한 연구이며, 시작지점부터 끝점까지의 위치를 정확히 추적해야 하는 요구사항을 만족해야 한다. 추적성능을 높이기 위해서는 시작점 설정이 주요한데 기존의 시간 기반 검출방법을 통해서는 조도, 분진 등 환경에 따라 추적오류의 발생 확률이 높다. 본 논문에서는 환경에 따른 오차를 줄이기 위해 고속 IR카메라의 평균 밝기 변화를 이용한 시작점 검출 방법을 제안하며, 제안 사항을 통해 15%이상의 성능 향상을 확인하였다.

평가와 선택기법에 기반한 대표패턴 생성 알고리즘 (A Representative Pattern Generation Algorithm Based on Evaluation And Selection)

  • 이형일
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권3호
    • /
    • pp.139-147
    • /
    • 2009
  • 메모리 기반 추론 기법은 단순히 학습패턴이나 대표패턴의 형태로 메모리에 저장하며 테스트 패턴과의 거리 계산을 통하여 분류한다. 이 기법의 가장 큰 문제점은 학습 패턴 전체를 메모리에 저장하거나 학습 패턴들을 대표 패턴으로 대체하는 방법을 사용함으로 다른 기계학습 방법에 비하여 많은 메모리 공간을 필요로 하며, 저장되는 학습패턴이 증가할수록 분류에 필요한 시간도 많이 소요된다는 단점을 갖는다. 본 논문은 효율적인 메모리 사용과 분류 성능의 향상을 위한 EAS 기법을 제안하였다. 즉, 학습패턴에 대해 분할공간을 생성한 후 생성된 각 분할공간을 MDL기법과 PM기법으로 평가하였다. 그리고 평가 결과 가장 우수한 분할공간만을 취하여 대표패턴으로 삼고 나머지는 다시 분할하여 평가를 반복하는 기법이다. UCI Machine Learning Repository에서 벤치마크 데이터를 발췌한 실험 자료를 사용하여 제안한 기법의 성능과 메모리 사용량에 있어 우수함을 입증하였다.

초.중.고등학교 확률과 통계 단원에 나타난 표본개념에 대한 분석 (Features of sample concepts in the probability and statistics chapters of Korean mathematics textbooks of grades 1-12)

  • 이영하;신수영
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제21권4호
    • /
    • pp.327-344
    • /
    • 2011
  • 본 연구는 고등학교 수학교과에서 배우는 모평균의 신뢰구간 구하기와 같은 통계적 추론 능력을 기르기 위한 방안의 첫 단계연구이다. 통계적 추론과정을 비판적으로 분석하여 신뢰할만한 추론방법으로 이를 인정할 수 있는 표본개념의 형성을 위해, 연구자들은 우연과 필연, 귀납과 연역, 가능성원리, 통계량의 변이성, 통계적 모형 등의 하위 개념들이 형성되어야 한다고 보았다. 그리고 초중등 통계단원의 전 과정에서 이들 개념의 체계적인 발달을 도모해야 한다는 전제 아래, 초 중 고등학교 통계단원을 분석해 본 결과는 아래와 같았다. 첫째, 문제해결 방법 선택의 지도와 관련하여, 통계적 방법을 선택할 문제 상황으로서, 우연적 상황을 필연적 상황과 구분하기위한 설명이 있는 교과서가 초등학교에는 없고, 중등 수준에서도 매우 드물었다. 둘째 표본의 모집단 관련 의미를 이해시키려는 단계적 준비가 미흡하다고 할 수 있다. 전체와 부분의 모집단과 표본 구분이 고등학교에서 비로소 공식화되고 있으며, 초 중학교에서 사용되는 표본자료는 그것으로부터 얻어지는 계산적 결과에만 초점이 맞추어짐으로서, 학년이 올라감에 따라 모집단을 향한 귀납적 추론의 신뢰성에 대한 비판적 사고의 깊이가 더해지는 모습을 찾아보기 어려웠다. 셋째, 무작위 추출이 갖는 대표성의 의미에 대한 설명보다는 무작위 활동 자체에 대한 설명이 중심이 됨으로서 무작위 추출의 확률적 의미, 즉 무작위 표본을 통해 구해질 통계량의 표집분포에서의 (상속된) 무작위성을 위한 담보로서의 목적에 대한 설명이 없다는 점이다. 넷째 통계적 추론을 수학(연역)적 추론과 구분해 주는 설명이 없을 뿐 아니라, 학습자의 논리성 발달 수준에 맞게 변화하는 가능성원리에 대한 설명, 적용 등을 전혀 찾기 어렵다는 점이다. 다섯째 통계량의 우연변이성과 그에 따른 표집분포의 존재에 대한 이해를 추구하는 설명을 찾기 어렵다는 점이다. 표집분포를 수학적으로 구하는 것은 매우 어려운 과정이지만, 그것의 존재를 인식하느냐 못하느냐는 통계적 추론 자체의 이해 가능성을 달리하는 중요한 문제이기 때문이다.

  • PDF

인터넷 쇼핑몰 유형에 따른 소비자 기대-성과에 관한 연구 (A Study on The Consumer Expectation - Performance according to the Types of Internet Shopping Malls)

  • 이인구;류학수
    • 산학경영연구
    • /
    • 제17권2호
    • /
    • pp.63-87
    • /
    • 2004
  • 인터넷 쇼핑몰의 수는 2004년 2월 현재 3,415개이며, 이는 2003년 동월대비 333개가 늘어난 것으로 10.8%의 증가를 보여주고 있다. 그러나 많은 기업들이 수익성 부족으로 어려움을 겪고 있는 실정이다. 이는 전자상거래를 이용하는 소비자들에 대한 연구와 조사 분석이 부족했음을 뜻한다. 지금과 같이 고객에 대한 체계적인 연구가 없이 개인적인 감각이나 세태의 추세에 의존하여 무분별하게 점포를 개설할 경우에 적자의 가능성은 더욱 높아질 것이다. 따라서 본 연구는 전자상거래의 한 영역인 기업-소비자간 인터넷 쇼핑몰을 중심으로 소비자의 기대-성과에 대한 차이를 보고자 하였다. 이에 따른 연구결과는 다음과 같다. 첫째, 인터넷 쇼핑몰 유형에 따른 고객만족요인의 유의적인 차이를 알아본 결과, 소비자 불안 인터넷 유용성만 쇼핑몰 유형에 따라 차이가 있는 것으로 나타났으며, 고객서비스는 인터넷 쇼핑몰 유형에 따른 기대-성과 차이가 나타나지 않았다. 소비자들은 소비자 불안에 대해 쇼핑몰의 유형에 상관없이 성과보다 기대가 높은 것으로 조사되었다. 특히, 기대-성과 차이에 있어서 종합형과 전문점에서는 개인정보유출이 가장 큰 차이를 보여주고 있는 반면에 중개형의 기능불안은 기대-성과차이가 가장 적은 것으로 조사되었다. 또한 인터넷 유용성에 있어서 기대-성과 차이를 알아본 결과, 전문형에서는 제품 정보 풍부, 정보 탐색비용 절감성이 가장 큰 차이를 나타내고 있는 반면에 중개형은 정보탐색 비용의 절감성이 가장 적은 차이를 보여주고 있다. 둘째, 고객서비스, 인터넷 유용성, 소비자 불안과 고객만족과의 관련성을 알아보기 위하여 회귀분석을 실시한 결과 고객 서비스, 인터넷 유용성, 소비자 불안은 모두 고객만족에 영향을 미치는 것으로 나타났다. 그리고 고객만족과 구전의도, 재구매 의도에 대한 관련성을 알아본 결과 고객만족은 구전의도, 재구매 의도에 모두 정(+)의 영향을 미치는 것으로 조사되었다. 3차원 영상으로 표현하여 보여주고, 환자에 관한 각종 정보와 진단정보 등을 신속하게 제공한다. 본 논문에서 제안하는 의료영상정보시스템은 초고속 정보통신 망을 통하여 원격의료시스템을 구축하는데 활용될 수 있을 것이다. 외 해수 중에서 생물입자 size 분포 보다 더 광범위한 분포와 다양한 환경(입자의 비중, 해상의 바람, 저질상태, 수심 등)에 의한 것으로 추정되었다.ents should be given this natural ground of proof.understanding with multiple, dynamic representations of the problem using visualization. The strategies used in making a plan were collecting data, using pictures, inductive, and deductive reasoning, and creative reasoning to develop abstract thinking. In carrying out the plan, students can solve the problem according to their strategies they planned in the previous phase. In looking back, the program is very useful to provide students an opportunity to reflect problem-solving process, generalize their solution and create a new in-depth problem. This program was well matched with the dynamic and oscillation Polya#s problem-solving process. Moreover, students can facilitate their motivation to

  • PDF

확률적 퍼지 룰 기반 학습에 의한 개인화된 미디어 제어 방법 (Personalized Media Control Method using Probabilistic Fuzzy Rule-based Learning)

  • 이형욱;김용휘;이태엽;박광현;김용수;조준면;변증남
    • 한국지능시스템학회논문지
    • /
    • 제17권2호
    • /
    • pp.244-251
    • /
    • 2007
  • 사용자 의도 파악(intention reading) 기술은 스마트 홈과 같은 복잡한 유비쿼터스(ubiquitous) 환경에서 사용자에게 보다 편리하고 개인화된(personalized) 서비스 제공이 가능하도록 해준다. 또한 학습 기능(learning capability)은 지식 발견(knowledge discovery)의 관점에서 의도 파악 기술의 핵심 요소 기술의 하나로 자리 매김하고 있다 이 논문에서는 스마트 홈(smart home) 환경에서 제공 가능한 개인화된 서비스 중의 하나로, 개인화된 미디어 제어 방법에 대한 내용을 다룬다. 특히, 사람의 행동 패턴과 같은 데이터는 패턴 분류의 관점에서 구분해야 할 클래스(class)에 비해 입력 정보가 불충분한 경우가 많아서 비일관적인(inconsistent) 데이터가 많으므로, 퍼지 논리(fuzzy logic)와 확률 (probability)의 개념을 효과적으로 병행해야 의미 있는 지식을 추출해 낼 수 있다. 이를 위하여 반복 퍼지 지도 클러스터링(IFCS; Iterative Fuzzy Clustering with Supervision) 알고리즘에 기반하여 주어진 데이터 패턴으로부터 확률적 퍼지 룰(probabilistic fuzzy rule)을 얻어 내는 방법에 대해 설명한다. 또한 이를 이용한 다양한 학습 제어 구조를 바탕으로 개인화된 미디어 서비스를 추천해 줄 수 있는 방법에 대해서 설명하도록 하고, 실험 결과를 통해 제안된 시스템의 효용성을 보이도록 한다.

ANFIS 접근방식에 의한 미래 트랜드 충격 분석 (Future Trend Impact Analysis Based on Adaptive Neuro-Fuzzy Inference System)

  • 김용길;문경일;최세일
    • 한국전자통신학회논문지
    • /
    • 제10권4호
    • /
    • pp.499-505
    • /
    • 2015
  • TIA(: Trend Impact Analysis)는 발생될 가능성이 있는 미래의 예기치 못한 사건들을 식별하고 분석하기 위한 고급 예측 도구에 속한다. 적응적인 뉴로-퍼지 추론 시스템은 인공신경망의 일종으로 신경망과 퍼지 로직 원리를 모두 통합하고 보편적 추정되는 것으로 간주한다. 본 논문에서는 적응적인 뉴로-퍼지 추론 시스템을 사용하여 예기치 못한 사건에 관한 심각성의 정도를 추론하고 이를 시간의 함수로서 도입하여 예기치 못한 사건들의 출현 확률에 관해 보다 타당한 추정치를 얻는데 있다. 이러한 접근방식에 대한 배후 개념은 예기치 못한 사건이 갑자기 출현되는 것이 아니라 관련 사건이 가지고 있는 속성 값에 대한 건드림 혹은 변화가 기존 속성 값의 한계를 벗어나 마치 새로운 사건인 것처럼 등장할 수 있음을 전제로 하고 있다. ANFIS 접근 방식은 이러한 사건을 식별해서 예기치 못한 사건의 심각성의 정도를 추론하는데 매우 적절한 방식이라 할 수 있다. 속성들의 변화 값들은 확률적인 동적 모델 및 Monte-Carlo 방법을 사용하여 얻을 수 있다. 제안된 모델에 관한 타당성은 강 유역의 예상치 못한 가뭄에 따른 충격 추세 곡선을 기존 연구 결과와의 비교를 통해 나타낸다.

개방형 과제를 활용한 수학 영재아 수업 사례 분석 (A Case Study on Instruction for Mathematically Gifted Children through The Application of Open-ended Problem Solving Tasks)

  • 박화영;김수환
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제20권1호
    • /
    • pp.117-145
    • /
    • 2006
  • 수학 영재들은 타고난 수학적 소질과 적성, 지적인 능력과 창의성을 바탕으로 참신한 과제에 대한 도전적이고 창조적인 호기심을 가지고 있다. 영재아들의 창의적인 사고력을 길러주기 위해서는 다양한 방법으로 문제 해결에 접근하게 하고 전략적 시도를 할 수 있도록 만들어주어야 한다. 이런 관점에서 볼 때 개방적이고 비정형적인 문제를 영재 교육프로그램의 과제로 선정하는 것은 바람직하다 할 수 있다. 본 논문에서는 다양한 유형의 개방형 문제를 구안하고, 이를 토대로 영재 학급에서 학습 활동을 전개한 후, 문제해결 과정에서 영재아들의 수학적 사고 능력의 특성과 문제 해결 전략 사례를 분석하여, 개방형 과제를 활용한 초등학교 영재 수업에 관한 시사점을 얻고자 하였다.

  • PDF

WeDo 로봇 활용 초등 메이커 교육 프로그램 개발 (Development of Elementary Maker Education Program using WeDo Robot)

  • 권순환;박정호
    • 한국정보교육학회:학술대회논문집
    • /
    • 한국정보교육학회 2021년도 학술논문집
    • /
    • pp.335-340
    • /
    • 2021
  • 본 연구는 농어촌 초등학교 저학년을 대상으로 로봇과 SW교육을 위한 메이커 교육 프로그램 환경 조성, 메이커교육 프로그램 개발 및 적용 연구를 수행하였다. 선행 메이커교육 모델을 기초로 초등학교 저학년 수준에 맞는 OMCSI 모형은 개발하였으며, 이를 기초로 5종의 WeDo 활용 초등 메이커 교육 프로그램을 개발하였다. 2020년 4월 1일 ~ 2020년 10월 30일까지 경상남도 대합초등학교의 2학년 10명을 대상으로 WeDo로봇 2.0을 활용한 초등 메이커 교육 프로그램을 적용한 결과는 다음과 같다. 컴퓨팅사고력의 분석능력에서 평균이 3.40점 올랐으며(t=-2.378, p=0.034), 설계능력에서도 평균이 3.30점 올랐다.(t=-2.329, p=0.040). 그리고 구현능력에서도 평균이 3.40점(t=-2.458, p=0.038)올랐다. 마지막으로 추론능력에서는 3.70점(t=-2.449, p=0.037)로 올랐다. 즉, 컴퓨팅 사고력 4개의 하위요소 모두가 유의확률 0.04이하로 사전사후 컴퓨팅 사고력의 점수 간에는 통계적인 유의미한 차이를 나타냈다. 따라서 WeDo 로봇을 활용한 초등 메이커 교육 프로그램'이 학생들의 컴퓨팅 사고력 향상에 매우 효과적으로 작용했다고 할 수 있다

  • PDF

Using the METHONTOLOGY Approach to a Graduation Screen Ontology Development: An Experiential Investigation of the METHONTOLOGY Framework

  • Park, Jin-Soo;Sung, Ki-Moon;Moon, Se-Won
    • Asia pacific journal of information systems
    • /
    • 제20권2호
    • /
    • pp.125-155
    • /
    • 2010
  • Ontologies have been adopted in various business and scientific communities as a key component of the Semantic Web. Despite the increasing importance of ontologies, ontology developers still perceive construction tasks as a challenge. A clearly defined and well-structured methodology can reduce the time required to develop an ontology and increase the probability of success of a project. However, no reliable knowledge-engineering methodology for ontology development currently exists; every methodology has been tailored toward the development of a particular ontology. In this study, we developed a Graduation Screen Ontology (GSO). The graduation screen domain was chosen for the several reasons. First, the graduation screen process is a complicated task requiring a complex reasoning process. Second, GSO may be reused for other universities because the graduation screen process is similar for most universities. Finally, GSO can be built within a given period because the size of the selected domain is reasonable. No standard ontology development methodology exists; thus, one of the existing ontology development methodologies had to be chosen. The most important considerations for selecting the ontology development methodology of GSO included whether it can be applied to a new domain; whether it covers a broader set of development tasks; and whether it gives sufficient explanation of each development task. We evaluated various ontology development methodologies based on the evaluation framework proposed by G$\acute{o}$mez-P$\acute{e}$rez et al. We concluded that METHONTOLOGY was the most applicable to the building of GSO for this study. METHONTOLOGY was derived from the experience of developing Chemical Ontology at the Polytechnic University of Madrid by Fern$\acute{a}$ndez-L$\acute{o}$pez et al. and is regarded as the most mature ontology development methodology. METHONTOLOGY describes a very detailed approach for building an ontology under a centralized development environment at the conceptual level. This methodology consists of three broad processes, with each process containing specific sub-processes: management (scheduling, control, and quality assurance); development (specification, conceptualization, formalization, implementation, and maintenance); and support process (knowledge acquisition, evaluation, documentation, configuration management, and integration). An ontology development language and ontology development tool for GSO construction also had to be selected. We adopted OWL-DL as the ontology development language. OWL was selected because of its computational quality of consistency in checking and classification, which is crucial in developing coherent and useful ontological models for very complex domains. In addition, Protege-OWL was chosen for an ontology development tool because it is supported by METHONTOLOGY and is widely used because of its platform-independent characteristics. Based on the GSO development experience of the researchers, some issues relating to the METHONTOLOGY, OWL-DL, and Prot$\acute{e}$g$\acute{e}$-OWL were identified. We focused on presenting drawbacks of METHONTOLOGY and discussing how each weakness could be addressed. First, METHONTOLOGY insists that domain experts who do not have ontology construction experience can easily build ontologies. However, it is still difficult for these domain experts to develop a sophisticated ontology, especially if they have insufficient background knowledge related to the ontology. Second, METHONTOLOGY does not include a development stage called the "feasibility study." This pre-development stage helps developers ensure not only that a planned ontology is necessary and sufficiently valuable to begin an ontology building project, but also to determine whether the project will be successful. Third, METHONTOLOGY excludes an explanation on the use and integration of existing ontologies. If an additional stage for considering reuse is introduced, developers might share benefits of reuse. Fourth, METHONTOLOGY fails to address the importance of collaboration. This methodology needs to explain the allocation of specific tasks to different developer groups, and how to combine these tasks once specific given jobs are completed. Fifth, METHONTOLOGY fails to suggest the methods and techniques applied in the conceptualization stage sufficiently. Introducing methods of concept extraction from multiple informal sources or methods of identifying relations may enhance the quality of ontologies. Sixth, METHONTOLOGY does not provide an evaluation process to confirm whether WebODE perfectly transforms a conceptual ontology into a formal ontology. It also does not guarantee whether the outcomes of the conceptualization stage are completely reflected in the implementation stage. Seventh, METHONTOLOGY needs to add criteria for user evaluation of the actual use of the constructed ontology under user environments. Eighth, although METHONTOLOGY allows continual knowledge acquisition while working on the ontology development process, consistent updates can be difficult for developers. Ninth, METHONTOLOGY demands that developers complete various documents during the conceptualization stage; thus, it can be considered a heavy methodology. Adopting an agile methodology will result in reinforcing active communication among developers and reducing the burden of documentation completion. Finally, this study concludes with contributions and practical implications. No previous research has addressed issues related to METHONTOLOGY from empirical experiences; this study is an initial attempt. In addition, several lessons learned from the development experience are discussed. This study also affords some insights for ontology methodology researchers who want to design a more advanced ontology development methodology.

수학적 사고력에 관한 인지신경학적 연구 개관 (A Review of the Neurocognitive Mechanisms for Mathematical Thinking Ability)

  • 김연미
    • 인지과학
    • /
    • 제27권2호
    • /
    • pp.159-219
    • /
    • 2016
  • 수학적 사고력은 STEM(science, technology, engineering, mathematics) 분야에서의 학업적인 성취와 과학기술의 혁신에서 중요한 역할을 하고 있다. 본 연구에서는 학제 간 연구 분야인 수 인지(numerical cognition) 및 수학적 인지와 관련된 최근의 인지신경학적 연구 결과들을 종합하여 개관하였다. 첫째로 수학적 사고의 기초가 되는 뇌 기제의 위치와 정보처리 메커니즘을 확인하였다. 수학적 사고는 영역 특정적(domain specific)인 기능인 수 감각과 시공간적 능력뿐만 아니라 영역 일반적(domain general)인 기능인 언어, 장기기억, 작업 기억(working memory) 등을 기초로 하며 이를 토대로 추상화, 추론 등의 고차원적인 사고를 한다. 이 중에서 수 감각과 시공간적 능력은 두정엽(parietal lobe)을 기반으로 한다. 두 번째로는 수학적 사고 능력에서 관찰되는 개인 차이에 대하여 고찰하였다. 특히 수학 영재들의 신경학적인 특성을 신경망 효율성(neural efficiency)의 관점에서 고찰해 보았다. 그 결과 높은 지능이란 두뇌가 얼마나 많이 일하느냐가 아니라 얼마나 효율적으로 일하는가에 달렸다는 사실을 확인하였다. 수학 영재들의 또 다른 특성은 좌반구와 우반구 간의 연결과 반구 내에서 전두엽과 두정엽의 연결이 뛰어나다는 사실이다. 세 번째로는 학습과 훈련, 그리고 성장에 따른 변화 및 발전에 대한 분석이다. 개인이 성장하며, 수학 학습과 훈련을 하게 될 때 이에 따라 두뇌 피질에서도 변화가 반영되어 나타난다. 그 변화를 피질에서의 활성화 수준의 변화, 재분배, 구조적 변화라는 관점에서 해석하였다. 이 중에서 구조적 변화는 결국 신경 가소성(neural plasticity)을 의미한다. 마지막으로 수학적 창의성은 수학적 지식(개념)을 기초로 하여 수학적 개념들을 결합하는 단계가 요구되며, 그 후 결합된 개념들 중에서 심미적인 선택을 통해 수학적 발명(발견)으로 연결된다. 전문성이 높아질수록 결합과 선택이라는 두 단계가 더욱 중요해진다.