DOI QR코드

DOI QR Code

Start Point Detection Method for Tracing the Injection Path of Steel Rebars

철근 사출 궤적 추적을 위한 시작지점 검출 방법

  • Received : 2019.02.20
  • Accepted : 2019.04.25
  • Published : 2019.06.30

Abstract

Companies that want to improve their manufacturing processes have recently introduced the smart factory, which is particularly noticeable. The ultimate goal is to maximize the area of the smart factory that performs the process of the production facility completely with minimal manual control and to minimize errors of reasoning. This research is a part of a project for unmanned production, management, packaging, and delivery management and the detection of the start point of rebars to perform the automatic calibration of the rollers through the tracking of the automated facilities of unmanned production. It must meet the requirement to accurately track the position from the start point to the end point. In order to improve the tracking performance, it is important to set the accurate start point. However, the probability of tracking errors is high depending on environments such as illumination and dust through the conventional time-based detection method. In this paper, we propose a starting point detection method using the average brightness change of high speed IR camera to reduce the errors according to the environments, As a result, its performance is improved by more than 15%.

최근 제조 공정을 개선하려는 기업들은 스마트 팩토리를 도입, 이에 따른 도약이 특별히 눈에 띈다. 이는 최소한의 수동 제어를 통해 완벽하게 생산시설의 프로세스를 수행하는 스마트 팩토리의 영역을 최대화하고 추론의 오차를 최소화 하는 것이 최종 목적이다. 본 연구는 무인 생산, 관리, 포장, 배송 관리를 위한 프로젝트의 일부로써 무인생산의 자동화 설비의 철근 추적을 통해 롤러의 자동 교정을 수행하기 위해 철근 추적 시작점 검출에 대한 연구이며, 시작지점부터 끝점까지의 위치를 정확히 추적해야 하는 요구사항을 만족해야 한다. 추적성능을 높이기 위해서는 시작점 설정이 주요한데 기존의 시간 기반 검출방법을 통해서는 조도, 분진 등 환경에 따라 추적오류의 발생 확률이 높다. 본 논문에서는 환경에 따른 오차를 줄이기 위해 고속 IR카메라의 평균 밝기 변화를 이용한 시작점 검출 방법을 제안하며, 제안 사항을 통해 15%이상의 성능 향상을 확인하였다.

Keywords

References

  1. G. S. Kim, Y. K. Choi, and K. K. Kim, "4th Industrial Revolution and Manufacturing Innovation: Introduction of Smart Factories and Changging Manufacturing Paradigm", Samjong INSIGHT, Vol. 55, pp. 2-15, Dec. 2017.
  2. F. Yin, "Real Time Imaging Verification and Tracking for Moving Targets", The International Journal of Medical Physics Research and Practice, Vol. 42, pp. 3738-3739, Jun. 2015.
  3. K. Briechle and U. D. Hanebeck, "Template matching using fast normalized cross correlation", The International society for Optics and Photonics Optical Pattern Recognition, Vol. 4387, pp. 95-102, Mar. 2001. https://doi.org/10.1117/12.421129
  4. G. Bradski and A. Kaehler, "Background Substraction", O'Reily Learning OpenCV, pp. 362-368, Sep. 2009.
  5. S. W. Lee, T. K. Kim, J. H. Yoo, and J. K. Paik, "Arnormal Behavior Detection Based on Adaptive Background Generation for Intelligent Video Analysis", Journal of the Institute of Electronics and Information Engineers, Vol. 48, No. 1, pp. 111-121. Jan. 2011.
  6. P. Kaew TraKuPong, and R. Bowden, "An Improved Adaptive Background Mixture Model for Real-time Tracking with Shadow Detection", Advanced Video Based Surveillance Systems, 2nd European Workshop, Sep. 2001.
  7. OpenCV Documentation Background Subtraction, https://docs.opencv.org/3.1.0/db/d5c/tutorial_py_bg_subtraction.html, [Accessed: Jan. 22. 2019]
  8. P. Viola and M. Jones, "Rapid object detection using a boosted cascade of simple features", IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 511-514, Dec. 2001.
  9. M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua, "Fast Keypoint Recognition Using Random Ferns", IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 32, pp. 450-454, Mar. 2010.
  10. G. Bradski and A. Kaehler, "Hough circle transform", O'Reily Learning OpenCV, pp. 227-232, Sep. 2009.
  11. A. Barsamian, V. H. Berk, and G. Cybenko, "Target Tracking and Localization Using Infrared Video Imagery", SPIE Unattended Ground Sea and Air Sensor Technologies and Applications, Vol. 6231, pp. 1-7, May 2006.
  12. D. Xie, D. Zhang, and P. Gao, "Research on phase-locked loop control and its application", IEEE Confference on Information Technology Networking Electronic and Automation Control, pp. 818-821, May 2016.
  13. W. Kihara and T. Yendo, "A Communication Method for Asynchronous Visible Light Communication Based Image Sensor", IEEE GLOBECOM Workshop on Optical Wireless Communications, pp. 1-6, Dec. 2017.
  14. J. Pan and B. Hu, "Robust occlusion handling in object tracking", IEEE Conference on Computer Vision Pattern Recognition, pp. 1-8, Jun. 2007.

Cited by

  1. An Algorithm for the Determination of Twisted Rebar using Feature Matching vol.19, pp.2, 2019, https://doi.org/10.14801/jkiit.2021.19.2.21
  2. PPCNN: Object Detection using Fine-grained Feature Extraction and Localization vol.19, pp.2, 2019, https://doi.org/10.14801/jkiit.2021.19.2.29