• Title/Summary/Keyword: probability index

Search Result 723, Processing Time 0.026 seconds

Rejection Degree by Fuzzy Significance Probability

  • Choi, Gyu-Tag;Park, Il-Soo;Nam, Hyun-Woo;Moon, Jong-Choon
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.135-139
    • /
    • 2014
  • We propose some properties for fuzzy hypothesis test by fuzzy significance probability. First, we define fuzzy number data and fuzzy significance probability for repeatedly observed data with alternated error term. By the agreement index, we compare fuzzy significance probability with significance level and drawing conclusions the degree of acceptance and rejection by agreement index.

A Probabilistic Fuzzy Logic Approach to Identify Productivity Factors in Indian Construction Projects

  • Princy, J. Darwin;Shanmugapriya, S.
    • Journal of Construction Engineering and Project Management
    • /
    • v.7 no.3
    • /
    • pp.39-55
    • /
    • 2017
  • Preeminent performance of construction industry are unattainable with poor productivity resulting in time and cost over runs. Enhancement in productivity cannot be achieved without identifying and analyzing factors that adversely affect productivity. The objective therefore is to propose a productivity analysis model to quantify the probability of effect of factors influencing productivity by using fuzzy logic incorporated with relative importance index method, for various types of construction projects. To achieve this objective, a questionnaire survey was carried out targeting respondents of Indian construction industry, from four distinct projects, namely, residential, commercial, infrastructure and industrial projects. Based on questionnaire administered, the relative importance and ranks of factors demonstrated using relative importance index method. Probability assessment model to analyze productivity was then developed by using Fuzzy Logic Toolbox of MATLAB. The applicability of the proposed model was tested in seven construction projects and the probability of impact of factors on productivity evaluated. The results of application of model in the construction firms infers that the most contributing factor groups for most of the projects were discerned to be manpower, motivation and time group.

Reliability index for non-normal distributions of limit state functions

  • Ghasemi, Seyed Hooman;Nowak, Andrzej S.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.365-372
    • /
    • 2017
  • Reliability analysis is a probabilistic approach to determine a safety level of a system. Reliability is defined as a probability of a system (or a structure, in structural engineering) to functionally perform under given conditions. In the 1960s, Basler defined the reliability index as a measure to elucidate the safety level of the system, which until today is a commonly used parameter. However, the reliability index has been formulated based on the pivotal assumption which assumed that the considered limit state function is normally distributed. Nevertheless, it is not guaranteed that the limit state function of systems follow as normal distributions; therefore, there is a need to define a new reliability index for no-normal distributions. The main contribution of this paper is to define a sophisticated reliability index for limit state functions which their distributions are non-normal. To do so, the new definition of reliability index is introduced for non-normal limit state functions according to the probability functions which are calculated based on the convolution theory. Eventually, as the state of the art, this paper introduces a simplified method to calculate the reliability index for non-normal distributions. The simplified method is developed to generate non-normal limit state in terms of normal distributions using series of Gaussian functions.

The Binomial Distribution with Fuzzy Valued Probability (퍼지 확률에 의한 이항분포)

  • Gang, Man-Gi;Seo, Hyeon-A;Park, Yeong-Rae;Choe, Gyu-Tak
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.33-36
    • /
    • 2008
  • We introduce some properties for fuzzy binomial distributions with fuzzy valued probability. First we define fuzzy type I error and type II error for fuzzy relative frequency and agreement index. And we show that an fuzzy power function and fuzzy binomial frequency function for binomial proportion test.

  • PDF

Assessment of spalling occurrence using fuzzy probability theory and damage index in underground openings (퍼지확률이론과 손상지수를 이용한 지하암반공동에서의 스폴링 발생 평가)

  • Bang, Joon-Ho;Lee, Kang-Hyun;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.1
    • /
    • pp.15-29
    • /
    • 2010
  • Spalling is a kind of instability phenomenon of surrounding rock around underground openings subjected to high in-situ stress according to the development of extension fractures. Three kinds of spalling criteria have been presented so far; however, all spalling criteria have the range of values so that the fuzziness and vagueness of spalling criterion cannot be avoided. In this study, a new fuzzy probability model is proposed to predict the probability of spalling in a systematic way by using fuzzy probability theory. Many of the underground opening projects worldwide are evaluated with the proposed method. Prediction results expressed as the spalling probability agree well with the in-situ observations. In particular, a new fuzzy probability model considering all three evaluation indices of spalling by adopting weighting factors based on relative reliability among three evaluation indices is able to resolve erroneous prediction of spalling by choosing only one prediction method. Moreover, the more reasonable value of spalling probability could have been obtained by adopting the modified damage index to the newly proposed fuzzy probability model.

Developing of Forest Fire Occurrence Probability Model by Using the Meteorological Characteristics in Korea (기상특성을 이용한 전국 산불발생확률모형 개발)

  • Lee Si Young;Han Sang Yoel;Won Myoung Soo;An Sang Hyun;Lee Myung Bo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.4
    • /
    • pp.242-249
    • /
    • 2004
  • This study was conducted to develop a forest fire occurrence model using meteorological characteristics for the practical purpose of forecasting forest fire danger. Forest fire in South Korea is highly influenced by humidity, wind speed, and temperature. To effectively forecast forest fire occurrence, we need to develop a forest fire danger rating model using weather factors associated with forest fire. Forest fore occurrence patterns were investigated statistically to develop a forest fire danger rating index using time series weather data sets collected from 8 meteorological observation centers. The data sets were for 5 years from 1997 through 2001. Development of the forest fire occurrence probability model used a logistic regression function with forest fire occurrence data and meteorological variables. An eight-province probability model by was developed. The meteorological variables that emerged as affective to forest fire occurrence are effective humidity, wind speed, and temperature. A forest fire occurrence danger rating index of through 10 was developed as a function of daily weather index (DWI).

Reliability analysis for design of shield tunnel segment lining under earthquake load (쉴드 터널 세그먼트 라이닝의 내진설계를 위한 신뢰성해석)

  • Park, Young-Bin;Kim, Do;Byun, Yosep;Lee, Gyu-Phil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.249-259
    • /
    • 2020
  • Design criteria for limit state design of underground structures have already been published overseas, and research has been conducted to revise the design method in Korea. In order to estimate the probability of failure under seismic load, the probability variable should be considered in the reliability analysis. In this study, the failure probability of the existing shield tunnel segment lining design was calculated by applying the coefficient of variation (COV) for the earth pressure and the seismic load effect in consideration of the statistical characteristics of the domestic ground properties. Based on the results of calculating the reliability index (β) from the calculated probability of failure and analyzing the reliability index according to the change in the load factor and the results of domestic and foreign research, the target reliability index (βT) during earthquakes of shield tunnel segment lining is analyzed to be "2.3", it was proposed as the target reliability index for the design of the limit state under seismic load.

Probability Distribution of Geotechnical Properties of Songdo area in Incheon (인천 송도지역 지반정수의 확률분포 추정)

  • Kim, Dong-Hee;Kim, Min-Tae;Ko, Seong-Kwon;Park, Jung-Gyu;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1399-1406
    • /
    • 2009
  • Probability distribution of geotechnical properties is very useful information and it is used for evaluating the geotechnical properties itself and calculating probability of failure. In this study, probability distribution of compression index, recompression index, and void ratio are evaluated, and analysis results show that all property distributions satisfy normal and log-normal distribution.

  • PDF

Empirical seismic fragility rapid prediction probability model of regional group reinforced concrete girder bridges

  • Li, Si-Qi;Chen, Yong-Sheng;Liu, Hong-Bo;Du, Ke
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.609-623
    • /
    • 2022
  • To study the empirical seismic fragility of a reinforced concrete girder bridge, based on the theory of numerical analysis and probability modelling, a regression fragility method of a rapid fragility prediction model (Gaussian first-order regression probability model) considering empirical seismic damage is proposed. A total of 1,069 reinforced concrete girder bridges of 22 highways were used to verify the model, and the vulnerability function, plane, surface and curve model of reinforced concrete girder bridges (simple supported girder bridges and continuous girder bridges) considering the number of samples in multiple intensity regions were established. The new empirical seismic damage probability matrix and curve models of observation frequency and damage exceeding probability are developed in multiple intensity regions. A comparative vulnerability analysis between simple supported girder bridges and continuous girder bridges is provided. Depending on the theory of the regional mean seismic damage index matrix model, the empirical seismic damage prediction probability matrix is embedded in the multidimensional mean seismic damage index matrix model, and the regional rapid prediction matrix and curve of reinforced concrete girder bridges, simple supported girder bridges and continuous girder bridges in multiple intensity regions based on mean seismic damage index parameters are developed. The established multidimensional group bridge vulnerability model can be used to quantify and predict the fragility of bridges in multiple intensity regions and the fragility assessment of regional group reinforced concrete girder bridges in the future.

Reliability analysis of circular tunnel with consideration of the strength limit state

  • Ghasemi, Seyed Hooman;Nowak, Andrzej S.
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.879-888
    • /
    • 2018
  • Probability-based design codes have been developed to sufficiently confirm the safety level of structures. One of the most acceptable probability-based approaches is Load Resistance Factor Design (LRFD), which measures the safety level of the structures in terms of the reliability index. The main contribution of this paper is to calibrate the load and resistance factors of the design code for tunnels. The load and resistance factors are calculated using the available statistical models and probability-based procedures. The major steps include selection of representative structures, consideration of the limit state functions, calculation of reliability for the selected structures, selection of the target reliability index and calculation of load factors and resistance factors. The load and resistance models are reviewed. Statistical models of resistance (load carrying capacity) are summarized for strength limit state in bending, shear and compression. The reliability indices are calculated for several segments of a selected circular tunnel designed according to the tunnel manual report (Tunnel Manual). The novelty of this paper is the selection of the target reliability. In doing so, the uniform spectrum of reliability indices is proposed based on the probability paper. The final recommendation is proposed based on the closeness to the target reliability index.