• 제목/요약/키워드: probabilistic fatigue life evaluation

검색결과 20건 처리시간 0.03초

차체 구조물의 확률론적 피로수명 평가 연구 (Probabilistic Fatigue Life Evaluation for a Car Body Structure)

  • 구병춘;서정원;김재훈
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(I)
    • /
    • pp.150-155
    • /
    • 2002
  • En case of the fatigue life evaluation of rolling stock structures, mainly deterministic fatigue life evaluation has been carried out. But most of the parameters influencing on the fatigue life have a probabilistic distribution such as normal, log-normal, Weibull, etc. Therefore, to take probabilistic factors into fatigue life evaluation, probabilistic methods are being applied to the fatigue life evaluation of rolling stock. In this paper, probabilistic S-N analysis and methods using limit state functions are introduced. And some results of fatigue life evaluation obtained with these methods for rolling stock structures are shown.

  • PDF

폴리아세탈 소재의 확률론적 변형률-수명선도 평가 (An Evaluation of Probabilistic Strain-Life Curve in Polyacetal)

  • 장천수;김철수;박범규;김정규
    • 대한기계학회논문집A
    • /
    • 제30권11호
    • /
    • pp.1417-1424
    • /
    • 2006
  • In order to evaluate variation of fatigue life of mechanical components including engineering plastics, it is important to estimate probabilistic strain-life curves to accurately define the variation of fatigue characteristics. This paper intends to provide new assessment of P-$\varepsilon$-N (probabilistic strain-life curves) for considering the variation of fatigue characteristics in polyacetal. The fatigue strain controlled tests were conducted under constant 50% humidity and room temperature condition by a universal testing machine at strain ratio, R=0. A practical procedure is introduced to evaluate probabilistic strain-life curves. Three probabilistic distributions were used for generating P-$\varepsilon$-N curves such as normal, 2-parameter and 3-parameter Weibull. In this study, 3-parameter Weibull distribution was found to be most appropriate among assumed distributions when the probability distributions of the fatigue characteristic were examined using chi-square and Kolmogorov-Smirnov test. The more appropriate P-$\varepsilon$-N curves for these materials are generated by the proposed method considering 3-parameter Weibull distribution.

몬테카를로 시뮬레이션에 의한 선박용 프로펠러재의 피로수명 확률분포 평가 (Evaluation for Probabilistic Distributions of Fatigue Life of Marine Propeller Materials by using a Monte Carlo Simulation)

  • 윤한용;장건위
    • 대한기계학회논문집A
    • /
    • 제32권12호
    • /
    • pp.1055-1062
    • /
    • 2008
  • Engineering materials have been studied and developed remarkably for a long time. But, few reports about marine propeller materials are presented. Recently, some researchers have studied the material strength of marine propellers. However, studies on parametric sensitivity and probabilistic distribution of fatigue life of propeller materials have not been made yet. In this study, a method to predict the probabilistic distributions of fatigue life of propeller materials is presented, and the influence of several parameters on the life distribution is discussed.

Effect of Specimen Thickness by Simulation of Probabilistic Fatigue Crack Growth

  • Kim, Seon-Jin
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 추계학술대회 논문집
    • /
    • pp.232-237
    • /
    • 2001
  • The evaluation of specimen thickness effect of fatigue crack growth life by the simulation of probabilistic fatigue crack growth is presented. In this paper, the material resistance to fatigue crack growth is treated as a spatial stochastic process, which varies randomly on the crack surface. Using the previous experimental data, the non-Gaussian(eventually Weibull, in this report) random fields simulation method is applied. This method is useful to estimate the probability distribution of fatigue crack growth life and the variability due to specimen thickness by simulating material resistance to fatigue crack growth along a crack path.

  • PDF

확률 유한요소해석법을 이용한 피로수명 및 강도해석 (Analysis of Fatigue Life and Fracture Toughness Using Probabilistic Finite Element Method)

  • 이현우;오세종
    • 대한기계학회논문집
    • /
    • 제18권6호
    • /
    • pp.1448-1454
    • /
    • 1994
  • Data which gathered and used in the field of fatigue and fracture mechanics have a lot of uncertainties. In this case, those uncertainties will make scatter band in evaluation of fatigue life and fracture toughness. Thus, the probabilistic analysis of these data will be needed. For determining the fatigue life in mixed mode, using crack direction law and fatigue crack growth law, the problem is studied as a constrained life minimization. Stress intensity factor(SIF) is computed by approximate solution table(Ewalds/Wanhill 1984) and 0th order PFEM. The variance of fatigue life and SIF are computed by differentiation of tabulated approximate solution and 1st order PFEM. And these are used for criterion of design values, principal parameter determination and modelling. The problem of center cracked plate is solved for checking the PFEM model which is influenced by various parameters like as initial crack length, final crack length, two fatigue parameters in Paris Equation and applied stress.

크랭크스로 단조강의 피로수명의 확률분포 추정 (Estimation of Probability Distribution of Fatigue Lives in Crank Throw Forged Steel)

  • 김선진;안석환
    • 동력기계공학회지
    • /
    • 제20권3호
    • /
    • pp.29-35
    • /
    • 2016
  • Because of the severe service environment of the large marine vessel, the fatigue strength and its evaluation play an important role in design and maintenance of marine crankshaft. The aim of this work is to investigate the probability distribution of fatigue lives in crank throw forged steel and to develop the methodology for estimation of the probabilistic design fatigue strength. Detailed studies were performed on the constant amplitude axial loading fatigue test. The experiments were controlled by stress ratio of -1 and 15Hz frequency for each stress level. The considerable variability of fatigue life was observed in each stress level under rigidly controlled constant fatigue testing conditions. The fatigue life of crank throw forged steel was well followed the log-normal and Weibull distribution. In addition, it can be used for the estimation of probabilistic design fatigue strength by using the proposed methodology.

저상버스용 하이브리드 복합재 조인트부의 통계적 피로수명평가 (Evaluation of Statistical Fatigue Life of Hybrid Composite Joints in Low-Floor Bus)

  • 정달우;최낙삼
    • 대한기계학회논문집A
    • /
    • 제34권11호
    • /
    • pp.1705-1713
    • /
    • 2010
  • 피로시험의 결과가 큰 편차를 보이는 하이브리드 복합재 조인트부에 대해서 통계적 피로수명 평가법을 이용하여 신뢰도 높은 피로수명을 추정하고자 한다. 저상버스 차체에 사용되는 하이브리드 복합재 조인트부를 절취하여 시험대상으로 하였으며, 이 조인트 시편으로 외팔보형 피로굽힘시험을 수행하였다. 피로시험 데이터를 정규분포, 대수정규분포, 와이블 분포를 이용하여 근접시킨 피로수명 곡선들과 각각 비교함으로써 하이브리드 복합재 조인트부의 내구수명 추정에 가장 적합한 확률분포를 선정하였다. 선정된 와이블 확률분포를 이용해 확률-응력-수명(P-S-N) 곡선을 구함으로써 하이브리드 복합재 조인트부에 대한 통계적 수명예측 평가절차와 신뢰성설계의 기초자료를 제시하였다.

강철도교의 활하중-사하중 비에 따른 확률기반 피로수명 평가 (Probabilistic Fatigue Life Evaluation of Steel Railway Bridges according to Live-Dead Loads Ratio)

  • 이상목;이영주
    • 한국산학기술학회논문지
    • /
    • 제20권1호
    • /
    • pp.339-346
    • /
    • 2019
  • 강철도교에 대한 확률기반 피로 수명 평가를 위한 많은 연구들이 그간 있어 왔지만, 대부분 상대적으로 단순한 피로 균열 진전 모델을 기반으로 한 연구들이었다. 이 모델은 최소 응력이 0이고 일정한 응력변동 진폭을 가정하기 때문에, 철도교의 피로수명 평가에는 적합하지 않다. 따라서 본 연구에서는 보다 고도화된 균열 진전 모델을 이용해 강철도교의 피로 수명을 평가하는 새로운 확률기반 기법을 제안하였다. 또한 이 기법은 철도교에서 흔히 발생하는 다양한 하중 변동 진폭을 rainflow cycle counting algorithm을 사용해 고려할 수 있어, 보다 현실적인 피로 수명을 평가할 수 있다. 제안된 기법을 강철도교 예제 모델에 적용하여 피로 수명을 주요 부재 및 시스템에 대해 평가하였다. 또한 다양한 활하중-사하중 비가 피로 수명에 끼치는 영향을 분석하였으며, 그 결과 활하중-사하중 응력 비가 0에서 5/6까지 증가함에 따라 부재와 시스템 수준 모두에서 피로 수명이 30년 내외까지 줄어드는 것을 확인하였다.

철도차량 구조물의 확률론적 피로수명 평가 (Probabilistic Fatigue Life Evaluation of Rolling Stock Structures)

  • 구병춘;서정원
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.89-94
    • /
    • 2003
  • Rolling stock structures such as bogie frame and car body play an important role for the support of vehicle leading. In general, more than 25 years' durability is needed for them. A lot of study has been carried out for the prediction of the fatigue life of the bogie frame and car body in experimental and theoretical domains. One of the new methods is a probabilistic fatigue lift evaluation. The objective of this paper is to estimate the fatigue lift of the bogie frame of an electric car, which was developed by the Korea Railroad Research Institute (KRRI). We used two approaches. In the first approach probabilistic distribution of S-N curve and limit state function of the equivalent stress of the measured stress spectra are used. In the second approach, limit state function is also used. And load spectra measured by strain gauges are approximated by the two-parameter Weibull distribution. Other probabilistic variables are represented by log-normal and normal distributions. Finally, reliability index and structural integrity of the bogie frame are estimated.

피로 자료 분산을 고려한 자동차 부품의 신뢰도 해석 (Evaluation of chassis component reliability considering variation of fatigue data)

  • 남기원;이병채
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.690-693
    • /
    • 2005
  • In this paper, probabilistic distribution of fatigue life of chassis component is determined statistically by applying the design of experiments and the Pearson system. To construct $p-\varepsilon-N$ curve, the case that fatigue data are random variables is attempted. Probabilistic density function(p.d.f) for fatigue life is obtained by design of experiment and using this p.d.f fatigue reliability about any aimed fatigue life can be calculated. Lower control arm and rear torsion bar of chassis component are selected as examples for analysis. Component load histories, which are obtained by multi-body dynamic simulation for Belsian load history, are used. Finite element analysis are performed using commercial software MSC Nastran and fatigue analysis are performed using FE Fatigue. When strain-life curve itself is random variable, probability density function of fatigue life has very little difference from log-normal distribution. And the case of fatigue data are random variables, probability density functions are approximated to Beta distribution. Each p.d.f is verified by Monte-Carlo simulation.

  • PDF